RdnE homologs act as DNA endonucleases and contain interchangeable domains.
A) Cell viability (colony forming units per mL) after protein production in swarms of P. mirabilis strain idrD*, which does not produce RdnE and RdnI. Cells produced GFPmut2, RdnE, or mutant variants in the predicted PD-(D/E)XK motif: D39A, E53A, K55A, or all. B) In vitro DNA degradation assay for ProteusRdnE. Increasing concentrations of a negative control, ProteusRdnE-FLAG, or ProteusRdnED39A-FLAG were incubated with methylated or unmethylated lambda DNA (48,502 bp) and analyzed by gel electrophoresis. Plasmid DNA degradation is in Supplemental Figure 1. C) In vitro DNA degradation assay for domain deletions of ProteusRdnE. The first construct removed the first alpha helix without disturbing the catalytic residues, and the second construct contained the PD-(D/E)XK motif and removed region 2. Increasing concentrations were analyzed as in (B). D) Multiple sequence alignment between P. mirabilis and R. dentocariosa RdnE sequences. Black bar show the PD-(D/E)XK motif and the grey bar marks the variable region 2 domain. Conserved residues are highlighted in dark blue. Secondary structure predictions identified using Ali2D55, 56 (h for alpha helix, e for beta sheet); the catalytic residues (stars) are noted above the alignment. (E,F) In vitro DNA degradation assay and analysis as in (B). (E) Increasing concentrations of either a negative control, RothiaRdnE-FLAG, or RothiaRdnED39A-FLAG. (F) The PD-(D/E)XK motifs were swapped between the RothiaRdnE (orange) and the ProteusRdnE (green) sequences and compared to the wild-type RdnE proteins.