The Hippo kinase cascade regulates a contractile cell behavior and cell density in a close unicellular relative of animals

  1. Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Erika Bach
    NYU Grossman School of Medicine, New York, United States of America
  • Senior Editor
    Utpal Banerjee
    University of California, Los Angeles, Los Angeles, United States of America

Reviewer #1 (Public Review):

Summary:
This Research Advance is an extension of this group's prior paper published in 2022 on the conserved roles of the Hippo pathway effector Yorkie in C. owczarzaki (PMID: 35659869). This species is an amoeba that holds an important phylogenetic position as a close relative of multicellular animals. The prior study used genome editing to delete the C. owczarzaki Yki (termed coYki) and found that Yki is not required for proliferation but instead regulates cell contractility and cell aggregation. In the current study, the authors wanted to address whether Hippo pathway kinases - coHippo (coHpo) and coWarts (coWts) - regulate coYki and whether they are dispensable for proliferation but instead regulate cell contractility and cell aggregation. They used genome editing to delete coHpo and coWts singly in C. owczarzaki. Both mutant strains had increased nuclear location of transfected coYki (tagged with Scarlet), suggesting that Hippo kinase pathway regulation of Yki is conserved in this organism. Neither kinase is required for proliferation. Either kinase mutant strain had a significantly increased percentage of cells that were elongated, which was relatively rare in a control population. The incident of elongation could be enhanced in both kinase-mutant and in control cells when myosin inhibitors were added to the media. coHpo and coWts-mutant aggregates were more tightly packed than control cell aggregates, which they hypothesize is due to the increased contractility seen in kinase-mutant cells. They could reduce the density of packing in kinase-mutant aggregates when they treated the cells with myosin or F-actin inhibitors. To test whether the effects observed in kinase-mutant strains were due to increased Yki activation, they generated a coYki with four S to A substitutions (termed coYki4SA), which should produce a dominant-active Yki impervious to phosphorylation and hence inactivation by Hippo kinases. Control C. owczarzaki cells transfected with coYki4SA had increased cell density in aggregates and elongation in adherent cells. These results support their conclusions that coHpo and coWts regulate cell contractility and cell packing through coYki.

Strengths:
The major strengths of the paper include high quality data, robust analyses of the data, and a well-written manuscript. The combination of genome editing in C. owczarzaki, transfection of C. owczarzaki, and time-lapse movies of adherent cells generally support the conclusions (1) that control of cell density is an ancient function of the Hippo pathway; (2) that Hippo pathway control of cytoskeletal properties and contractile behavior underlie its regulation of cell density, and (3) that Hippo kinase control of Yki localization is likely an ancient function of the pathway.

Weaknesses:
There are only minor weaknesses. (1) Fig. 3C needs the "still" for the movie of control C. owczarzaki (in Movie S1). (2) The elongated cell shape is seen infrequently in control cells, and I wonder whether these events are transient inactivation of coHpo or coWts in these cells. Perhaps the authors could comment on this in the discussion. (3) Does C. owczarzaki normally aggregate or this is a lab-specific phenotype? For example, the slime mold Dictyostelium discoideum forms aggregates during its life cycle. Could some additional information about C. owczarzaki be added to the introduction?

Reviewer #2 (Public Review):

Summary:
The study builds on the work of the Pan group and others which has described the existence of core Hippo pathway proteins in Capsaspora and, more recently, described a role for a Yorkie/YAP homologue in regulation of cell shape and actin, as opposed to proliferation. For this recent study, they developed genetic techniques to mutate genes in Capsaspora, and this technology has been leveraged again in this study. Using loss of genetic approaches, the authors find that loss of either of the two major kinases in the Hippo pathway core kinase cassette (Warts and Hippo) impact Capsaspora morphology and the actin cytoskeleton. This is phenocopied by overexpression of Capsaspora Yorkie/YAP. In addition, Capsaspora Yorkie/YAP accumulates in the nucleus of organisms lacking Warts or Hippo, as it does in metazoans. While these experiments are not overly surprising, they still provide important verification that core Hippo signaling events are conserved in Capsaspora.

Subsequently, they show that Capsaspora lacking Warts or Hippo do not overproliferate, which contrasts with many studies in animals, particularly in epithelial tissues where loss of Warts or Hippo often causes overproliferation. Rather, the authors show that Capsaspora Warts and Hippo regulate cell morphology and actomyosin-dependent contractile behaviour. They speculate from these findings that Hippo signalling could regulate the density of Capsaspora when they grow in aggregates and draw parallels to the known role of the Hippo pathway in contact inhibition of mammalian cells grown in culture.

Strengths:
Together with their 2022 paper, this study paints an emerging picture that the ancestral function of the Hippo pathway is to regulate the actin cytoskeleton, not proliferation, which is a significant finding. This also suggests that the ability to control proliferation was something that the Hippo pathway was re-purposed to do at some stage during the evolution of metazoans. These findings are important for the Hippo field, and our understanding of cellular signalling and evolution more broadly.

Weaknesses:
Further biochemical and genetic experiments would allow the authors to more convincingly prove that core features of Hippo signalling are conserved in Capsaspora - e.g., that Capsaspora Hippo/MST activates Warts/LATS by phosphorylation and Warts/LATS represses Yorkie/YAP by phosphorylation hey serine residues. Additional genetic studies would also allow one to determine whether Capsaspora Yki/YAP controls actomyosin contractility by transcription (with the Scalloped/TEAD homologue) and/or by non-transcriptional mechanisms, as have been reported for Yki in Drosophila. Higher resolution imaging approaches such as electron microscopy would likely give further mechanistic insights into how Hpo, Wts and Yki modulate actomyosin contractility in Capsaspora.

Reviewer #3 (Public Review):

The authors present in this study the characterization of two mutant lines of the filasterean Capsaspora owczarzaki, a unicellular holozoan with a key phylogenetic position to understand multicellular development in animals. The present study is built on a previous work from the same research group, on the mutant of the orthologue of the Yorki gene in C. owczarzaki. By knocking out the two upstream kinases of the same pathway, coHpo-/- and coWts-/-, in single cell and aggregates of C. owkzarzaki, they now have mutated the entire pathway and in different cellular contexts.

The authors obtain results in the same direction as the previous work, demonstrating that the Hippo pathway of the unicellular holozoan C. owczarzaki, is not involved in the control of cell proliferation but is related with cytoskeletal dynamics through the actin-myosin mechanism.

The work carried out in this study is technically precise at all levels, molecular, cellular and microscopy. The reviewer here acknowledges how difficult is to work and develop tools and mutant lines in a non-model organism and therefore congratulates the authors in their efforts. The authors have done excellent work in this sense and all data presented seems to be solid.

Nevertheless, some of the observations, in my opinion, should be further investigated before taking the conclusion that the Hippo pathway controls cell density and a contractile behavior in the C. owczarzaki. On the hand the authors claim as main conclusions what they have partially already claimed in the previous work (Phillips et al. eLife 2022;0:e77598).

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation