Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorK VijayRaghavanNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Senior EditorK VijayRaghavanNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
Reviewer #1 (Public Review):
Summary:
Babosha et al. deeply investigate the N-terminal region of the Drosophila dosage compensation protein MSL1. Much of the prior research into the dosage compensation complex has focused on the male-specific MSL2 protein. However, the authors point out prior evidence that the N-terminus of MSL1 is important for protein function, including interaction with MSL2. Through a series of transgenic deletions and substitutions, the authors pinpoint two regions: N-terminal amino acids 3-7 and 41-65, which are critical for the binding of MSL1 to the X-chromosome and recruitment of MSL2. To deepen these observations, the authors perform well-controlled immunoprecipitation experiments to test the interaction of mutant MSL1 proteins with the lncRNA roX2, which is critical for the stability and localization of the dosage compensation complex. Through immunoprecipitation, the authors discover that the interaction of their mutant MSL1 proteins with roX2 is compromised. They suggest that the roX-MSL1 interaction is mediated by the N-terminal amino acids and is also critical for interaction with MSL2 and X-specific localization. This agrees with previous models that MSL1 and MSL2 directly interact through other regions.
This work lays the foundation for future investigations into the overall structure of the dosage compensation machinery, which allows this unique complex to specifically target the X-chromosome through still unclear mechanisms.
Strengths:
The data provided by the authors is of high quality and supports the authors' conclusions, which are nicely contextualized in the text with previous models. The novelty of this study is specifically pinpointing the amino acid regions of MSL1 that interact with roX. The authors point out that, surprisingly, the N-terminal region of MSL1 is not particularly well conserved, indicating that the interactions outlined in this study might be Drosophila/Diptera-specific.
The major strength of this study is that the authors find agreement between multiple dimensions of experimentation: the regions of MSL1 that are required for roX2 interaction (immunoprecipitation experiments) are also the regions that are critical for MSL1 localization to polytene chromosomes in an artificial female in vivo system, which are also critical for male-specific survival. The authors later suggest that it is the roX2 interaction that is responsible for the latter observations, although there is no direct evidence for this suggestion.
Weaknesses:
A minor weakness of the study is that it largely supports, and incrementally expands, the existing model in the field: that roX RNAs mediate the assembly of the complex on chromatin. I hesitate to call this a weakness, as supporting an existing model is still strong scientifically. However, the current study does not dramatically push the model forward.
Reviewer #2 (Public Review):
Summary:
A deletion analysis of the MSL1 gene to assess how different parts of the protein product interact with the MSL2 protein and roX RNA to affect the association of the MSL complex with the male X chromosome of Drosophila was performed.
Strengths:
The deletion analysis of the MSL1 protein and the tests of interaction with MSL2 are adequate.
Weaknesses:
This reviewer does not adhere to the basic premise of the authors that the MSL complex is the primary mediator of dosage compensation of the X chromosome of Drosophila. Several lines of evidence from various laboratories indicate that it is involved in sequestering the MOF histone acetyltransferase to the X chromosome but there is a constraint on its action there. When the MSL complex is disrupted, there is no overall loss of compensation but there is an increase in autosomal expression. Sun et al (2013, PNAS 110: E808-817) showed that ectopic expression of MSL2 does not increase expression of the X and indeed inhibits the effect of acetylation of H4Lys16 on gene expression. Aleman et al (2021, Cell Reports 35: 109236) showed that dosage compensation of the X chromosome can be robust in the absence of the MSL complex. Together, these results indicate that the MSL complex is not the primary mediator of X chromosome dosage compensation. The authors use sex-specific lethality as a measure of disruption of dosage compensation, but other modulations of gene expression are the likely cause of these viability effects.
A detailed explanation was provided by Birchler and Veitia (2021, One Hundred Years of Gene Balance: How stoichiometric issues affect gene expression, genome evolution, and quantitative traits. Cytogenetics and Genome Research 161: 529-550). The relevant portions of that article that pertain to Drosophila are quoted below. The cited references can be found in that publication.
"In Drosophila, the sex chromosomes consist of an X and a Y. The Y in this species contains only a few genes required for male fertility (Zhang et al., 2020). The X consists of approximately 20% of the genome. Thus, females have two X chromosomes and males have one. Muller (1932) found that the expression of genes between the two sexes was similar but when individual genes on the X were varied in dosage they exhibited a proportional dosage effect. Each copy in a male was expressed at about twice the level as each copy in a female. Females with three X chromosomes are highly inviable but when they do survive to the adult stage, Stern (1960) found that they too exhibited dosage compensation in that the expression in the triple X genotype was similar to normal females and males. Studies in triploid flies found that dosage compensation also occurred among X; AAA, XX; AAA, and XXX; AAA genotypes via upregulation of the Xs, where X indicates the dosage of the X and A indicates the triploid nature of the autosomes (see Birchler, 2016 for further discussion). Diploid and triploid females have a similar per-gene expression but the other five genotypes each must modulate gene expression by different amounts equivalent to an inverse relationship between the X versus autosomal dosage to achieve a balanced expression between the X and the A (Birchler, 1996).
Some years ago, mutations were sought in Drosophila that were lethal to males but viable in females. A number of such mutations were found and termed Male Specific Lethal (MSL) loci (Belote and Lucchesi, 1980). Once the products of these genes were identified, they were found to be at high concentrations on the male X chromosome (Kuroda et al., 1991). One of these genes encodes a histone acetyltransferase that acetylates Lysine16 of Histone H4 (Bone et al., 1994; Hilfiker et al., 1997). The recognition of the MSL complex and its association with the male X was an important set of contributions to an understanding of sex chromosome evolution in Drosophila (Kuroda et al., 2016). Thus, the hypothesis arose that the MSL complex accumulated this chromatin modifier on the male X to activate the expression about two-fold to bring about dosage compensation. Other data that contributed to this hypothesis were that when autoradiography of nascent transcription on salivary gland polytene chromosomes was examined in the MSL maleless mutation, the ratio of the number of grains over the X versus an autosomal region was reduced compared to the normal ratio (Belote and Lucchesi, 1980).
It has been pointed out (Hiebert and Birchler, 1994; Bhadra et al., 1999; Pal Bhadra et al., 2005; Sun et al., 2013a; Birchler, 2016), however, that the grain counts over the X and the autosomes when considered in absolute terms rather than as a ratio show that the X more or less retained dosage compensation and the autosomal numbers are about doubled, i.e. exhibit an inverse dosage effect. The same situation occurs with the msl3 mutation (Okuno et al., 1984), another MSL gene, in that the autoradiographic grain numbers as an absolute measure show retention of X dosage compensation and an autosomal increase. The data treatment to produce an X to A ratio seemed reasonable in the context of the time when all regulation in eukaryotes was considered positive. However, when studies were conducted in such a manner as to assay the absolute effect on gene expression in the maleless mutation, in adults (Hiebert and Birchler, 1994), larvae (Hiebert and Birchler, 1994; Bhadra et al., 1999; 2000; Pal Bhadra et al., 2005), and embryos (Pal Bhadra et al., 2005), the trend was for retention of dosage compensation of X linked genes and an increase in expression of autosomal genes.
In global studies, if the X to autosomal expression does not change between mutant and normal, one can conclude that dosage compensation is operating. However, a lower X to A ratio could be a loss of compensation or an increased transcriptome size from the increase of the autosomes, as suggested by the absolute data of Belote and Lucchesi (1980) and Okuno et al (1984) and was visualized directly in embryos (Pal Bhadra et al., 2005). The transcriptome size in aneuploids can change, which cannot be detected in RNA-seq analyses alone (Yang et al., 2021), so it is an important consideration for studies of dosage compensation. It was recently acknowledged that in MSL2 knockdowns the relative X expression is decreased and a moderate autosomal increase is found (Valsecchi et al., 2021b). A similar trend is evident in the microarray data on MSL2 knockdown in SL2 tissue culture cells (Hamada et al., 2005) and in the roX RNA (noncoding RNAs essential for MSL localization on the male X) mutants (Deng and Meller, 2006). This trend is in fact consistent with the absolute data that suggest an increase in the transcriptome size (Figure 7). A global change in transcriptome size can cause a generalized dosage compensation of a single chromosome to appear as a proportional dosage effect (loss of compensation) to some degree (Figure 7).
Examination of expression in triple X metafemales, where there is no MSL complex, found that X-linked genes generally show dosage compensation but there is a generalized inverse effect on the autosomes, which could account for the detrimental effects of metafemales (Birchler et al., 1989; Sun et al., 2013b). An examination in metafemales of alleles of the white eye color gene that do or do not exhibit dosage compensation in males, showed the same response, namely, increased expression if there was no dosage compensation in males and no difference from normal females for the male dosage-compensated alleles (Birchler, 1992). This experiment demonstrated a relationship between the mechanism of dosage compensation in males and metafemales and implicated the inverse dosage effect in both. An involvement of the inverse effect in Drosophila dosage compensation provides an explanation for how the five levels of gene expression can be explained (Birchler, 1996), whereas an all-or-none presence of a complex on the X does not. The stoichiometric relationship of regulatory gene products provides a means to read the relative dosage at multiple doses to produce the appropriate inverse level.
What then is the function of the MSL complex? It was discovered that the MSL complex will actually constrain the effect of H4 lysine16 acetylation to prevent it from causing overexpression of genes (Bhadra et al., 1999; 2000; Pal Bhadra et al., 2005; Sun and Birchler 2009; Sun et al., 2013a). Indeed, in the chromatin remodeling Imitation Switch (ISWI) mutants, the male X chromosome was specifically overexpressed suggesting that its normal function is needed for the constraint to occur (Pal Bhadra et al., 2005). Independently, the Mtor nuclear pore component shows a similar specific male X upregulation when Mtor is knocked down and this effect was shown to operate on the transcriptional level (Aleman et al., 2021). Interestingly, the increased expression of the X in the Mtor knockdown is accompanied by an inverse modulation of a substantial subset of autosomal genes, illustrating why the constraining process evolved to counteract male X overexpression. The constraining effect might involve a number of gene products (Birchler, 2016) and is an interesting direction for further study.
Furthermore, when the H4Lys16 acetylase was individually targeted to reporter genes, there was an increase in expression (Sun et al., 2013a). However, when other members of the MSL complex were present in normal males or ectopically expressed, this increase did not occur (Sun et al., 2013a). It thus appears that the function of the MSL complex is to sequester the acetylase from the autosomes and constrain it on the X (Bhadra et al., 1999; 2000; Pal Bhadra et al., 2005; Sun and Birchler, 2009; Sun et al., 2013a). Indeed, in the Mtor knockdowns, the X-linked genes with the greatest upregulation were those with the greatest association with the acetylase and the H4K16ac histone mark (Aleman et al 2021), supporting the idea of a constraining activity that becomes released in the Mtor knockdown. When the MSL complex is disrupted, there is an inverse effect on the autosomes that occurs but in normal circumstances the sequestration mutes this effect. The MSL complex disruption releases the acetylase to be uniformly distributed across all chromosomes as determined cytologically (Bhadra et al., 1999) or via ChIPseq for H4Lys16ac (Valsecchi et al., 2021a). Indeed, the quantity of the H4Lys16ac mark only has a proportional effect on gene expression when the constraining activity is disrupted (Aleman et al., 2021) or when the MSL complex is not present (Sun et al., 2013a). Thus, in normal flies, there is a more or less equalized expression of the X and autosomes despite the monosomy for 20% of the genome.
The component of the complex that is expressed in males and thought to organize the complex to the male X, MSL2, was recently found to also be associated with autosomal dosage-sensitive regulatory genes (Valsecchi et al., 2018). MSL2 was found to modulate these autosomal dosage-sensitive genes in various directions, which illustrates that MSL2 has a role in dosage balance that goes beyond the X chromosome. This finding is consistent with the evolutionary scenario that the initial attraction of the complex to the X chromosome was to upregulate dosage-sensitive genes in hemizygous regions as the progenitor Y became deleted for them, with the constraining activity evolving to prevent an overexpression as the amount of acetylase on the male X increased with time (Birchler, 2016).
The MSL hypothesis takes an X-centric view that does not accommodate what is now known about dosage effects across the whole genome. The idea that dissolution of the MSL complex would cause a reduction in expression of the male X-linked genes without any consequences for the autosomes is not consistent with current knowledge of gene regulatory networks and their dosage sensitivity. Indeed, the finding of dosage compensation in large autosomal aneuploids that operates on the transcriptional level (Devlin et al., 1982; 1984; Birchler et al., 1990; Sun et al., 2013c), as well as a predominant inverse effect by the same (Devlin, et al., 1988; Birchler et al., 1990), argues that one must consider the inverse effect for an understanding of the evolution of dosage compensation in Drosophila (and other species). Further discussion of models of Drosophila compensation has been published (Birchler, 2016).
What is likely to be the most critical issue with sex chromosome evolution is the consequences for dosage-sensitive regulatory genes. This fact is nicely illustrated by the retention of these types of genes in different independent vertebrate sex chromosome evolutions (Bellott and Page, 2021). In Drosophila, by contrast, dosage compensation is more of a blanket effect on most but not all X-linked genes despite the fact that many genes on the X are unlikely to have dosage detrimental effects, although dosage-sensitive genes might have played a role as noted above. The particularly large size of the X in Drosophila compared to the whole genome is potentially a contributing factor because such a large genomic imbalance is likely to modulate most genes across the genome. Also, there is no evidence of a WGD in Drosophila as there is in other species for which the inverse effect has been documented (maize, Arabidopsis, yeast, mice, human). These other species have various numbers of retained duplicate dosage-sensitive regulatory genes from WGDs. Thus, the relative change of regulatory genes in aneuploids in these species will not be as great compared to some of their interactors in the remainder of the genome, which could result in lesser magnitudes of some trans-acting effects, similar to how aneuploids in ascending ploidies have fewer effects as described above. The absence of duplicate regulatory genes in Drosophila would predict a stronger inverse effect in general and that could have been capitalized upon to produce dosage compensation of most genes on the X chromosome despite many of them not being dosage critical. While sex chromosome evolution must accommodate dosage-sensitive genes for proper development and viability, it could also be capitalized upon to evolve sexual dimorphisms in expression (Sun et al., 2013c)."