Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Volker Dötsch
    Goethe University Frankfurt, Frankfurt am Main, Germany
  • Senior Editor
    Volker Dötsch
    Goethe University Frankfurt, Frankfurt am Main, Germany

Reviewer #1 (Public Review):

Summary:

The authors have previously described a way to boost WNT/CTNNB1 signaling in a tissue-specific manner, by directing an RSPO2 mutant protein (RSPO2RA) to a liver-specific receptor (ASGR1/2). This is done by fusing the RSPO2RA to an antibody that binds ASGR1/2.

Here the authors describe two new antibodies, 8M24 and 8G8, with similar effects. 8M24 shows specificity for ASGR1, while 8G8 has broader affinity for mouse/human ASGR1/2.

The authors resolve and describe the crystal structure of the hASGR1CRD:8M24 complex and the hASGR2CRD:8G8 complex in great detail, which helps explain the specificities of the 8M24 and 8G8 antibodies. Their epitopes are non-overlapping.
Upon fusion of the antibodies to an RSPO2RA (an RSPO mutant), these antibodies are able to enhance WNT signaling by promoting the ASGR1-mediated clearance of ZNRF3/RNF43, thereby increasing cell surface expression of FZD. This has previously also been shown to be the case for RSPO2RA fused to an anti-ASGR1 antibody 4F3 - and the paper also tests how the antibodies compare to the 4F3 fusion.

Strengths:
One challenge in treating diseases is the fact that one would like therapeutics to be highly specific - not just in terms of their target (e.g. aimed at a specific protein of interest) but also in terms of tissue specificity (i.e. affecting only tissue X but leaving all others unaffected). This study broadens the collection of antibodies that can be used for this purpose and thus expands a potential future clinical toolbox.

Weaknesses:
1. The authors demonstrate that ASGR1 is degraded in response to RSPO2RA-antibody treatment through both the proteasomal and the lysosomal pathway, suggesting that this is due to the RSPO2RA-mediated recruitment of ZNRF3/RNF43, which have E3 ubiquitin ligase activity. The paper doesn't show, however, if ASGR1 is indeed ubiquitinated.

2. The authors conclude that the RSPO2A-Ab fusions can act as a targeted protein degredation platform, because they can degrade ASGR. While I agree with this statement, I would argue that the goal of these Abs would not be to degrade ASGR per se. The argumentation is a bit confusing here. This holds for both the results and the discussion section: The authors focus on the dual role of their agents, i.e. on promoting both WNT signaling AND on degrading ASGR1. They might want to reconsider how they present their data (e.g. it may be interesting to target ASGR1, but one would presumably then like to do this without also increasing WNT responsiveness?).

3. Lines 326-331: The authors use a lot of abbreviations for all of the different protein targeting technologies, but since they are hinting at specific mechanisms, it would be better to actually describe the biological activity of LYTAC versus AbTAC/PROTAB/REULR so non-experts can follow.

4. Can the authors comment on how 8M24 and 8G8 compare to 4F3? The latter seems a bit more specific (ie. lower background activity in the absence of ASGR1 in 5C)? Are there any differences/advances between 8M24 and 8G8 over 4F3? This remains unclear.

5. Can the authors ensure that the axes are labelled/numbered similarly for Fig 5B-D? This will make it easier to compare 5C and 5D.

Reviewer #2 (Public Review):

Summary:
The authors have previously engineered an antibody fusion protein targeting ZNRF3/RNF43 ubiquitin ligases, which enhances Wnt signaling specifically in hepatocytes. This is achieved using RSPO2RA (ZNRF3/RNF43 ligand with F105R/F109A mutations which abolish its binding to LGRs) and ASGR1 (hepatocyte-specific cell surface molecule). In the current study, they have identified two new ASGR1 and ASGR1/2 antibodies (8M24 and 8G8), which also enhance Wnt signaling when fused to RSPO2RA antibody. These also lead to the degradation of ASGR1, demonstrating that protein degradation and signaling enhancement can be dually targeted with a single molecule.

Strengths:
The authors show crystal structures for binding of these antibodies to ASGR1/2, and hypothesize about why specificity is mediated through specific residues. They do not test these hypotheses.

The authors demonstrate a sub-picomolar affinity of these antibodies for ASGR1/2, which should be powerful clinically.

The authors demonstrate in hepatocyte cell lines that these function as mimetics, and that they do not function in HEK cells, which do not express ASGR1. They do not perform an exhaustive screen of all non-hepatocyte cells, nor do they test these molecules in vivo.

Surprisingly, these molecules also induced loss of ASGR1, which the authors hypothesize is due to ubiquitination and degradation, initiated by the E3 ligases recruited to ASGR1. They demonstrate that inhibition of either the proteasome or lysosome abrogates this effect and that it is dependent on E1 ubiquitin ligases. They do not demonstrate direct ubiquitination of ASGR1 by ZNRF3/RNF43.

Weaknesses:
As co-listed with strengths above, the analysis is not always exhaustive but shows good preliminary findings for the field.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation