Visual information is broadcast among cortical areas in discrete channels

  1. Department of Electrical and Computer Engineering, University of California Santa Barbara, USA
  2. LifeCanvas, USA
  3. San Diego, USA
  4. Dynamical Neurosciences, University of California Santa Barbara, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Leopoldo Petreanu
    Champalimaud Center for the Unknown, Lisbon, Portugal
  • Senior Editor
    Andrew King
    University of Oxford, Oxford, United Kingdom

Reviewer #1 (Public Review):

Using multi-region two-photon calcium imaging, the manuscript meticulously explores the structure of noise correlations (NCs) across the mouse visual cortex and uses this information to make inferences about the organization of communication channels between primary visual cortex (V1) and higher visual areas (HVAs). Using visual responses to grating stimuli, the manuscript identifies 6 tuning groups of visual cortex neurons and finds that NCs are highest among neurons belonging to the same tuning group whether or not they are found in the same cortical area. The NCs depend on the similarity of tuning of the neurons (their signal correlations) but are preserved across different stimulus sets - noise correlations recorded using drifting gratings are highly correlated with those measured using naturalistic videos. Based on these findings, the manuscript concludes that populations of neurons with high NCs constitute discrete communication channels that convey visual signals within and across cortical areas.

Experiments and analyses are conducted to a high standard and the robustness of noise correlation measurements is carefully validated. However, the interpretation of noise correlation measurements as a proxy from network connectivity is fraught with challenges. While the data clearly indicates the existence of distributed functional ensembles, the notion of communication channels implies the existence of direct anatomical connections between them, which noise correlations cannot measure.

The traditional view of noise correlations is that they reflect direct connectivity or shared inputs between neurons. While it is valid in a broad sense, noise correlations may reflect shared top-down input as well as local or feedforward connectivity. This is particularly important since mouse cortical neurons are strongly modulated by spontaneous behavior (e.g. Stringer et al, Science, 2019). Therefore, noise correlation between a pair of neurons may reflect whether they are similarly modulated by behavioral state and overt spontaneous behaviors. Consequently, noise correlation alone cannot determine whether neurons belong to discrete communication channels.

Behavioral modulation can influence the gain of sensory-evoked responses (Niell and Stryker, Neuron, 2010). This can explain why signal correlation is one of the best predictors of noise correlations as reported in the manuscript. A pair of neurons that are similarly gain-modulated by spontaneous behavior (e.g. both active during whisking or locomotion) will have higher noise correlations if they respond to similar stimuli. Top-down modulation by the behavioral state is also consistent with the stability of noise correlations across stimuli. Therefore, it is important to determine to what extent noise correlations can be explained by shared behavioral modulation.

Reviewer #2 (Public Review):

Summary:

This groundbreaking study characterizes the structure of activity correlations over a millimeter scale in the mouse cortex with the goal of identifying visual channels, specialized conduits of visual information that show preferential connectivity. Examining the statistical structure of the visual activity of L2/3 neurons, the study finds pairs of neurons located near each other or across distances of hundreds of micrometers with significantly correlated activity in response to visual stimulation. These highly correlated pairs have closely related visual tuning sharing orientation and/or spatial and/or temporal preference as would be expected from dedicated visual channels with specific connectivity.

Strengths:

The study presents best-in-class mesoscopic-scale 2-photon recordings from neuronal populations in pairs of visual areas (V1-LM, V1-PM, V1-AL, V1-LI). The study employs diverse visual stimuli that capture some of the specialization and heterogeneity of neuronal tuning in mouse visual areas. The rigorous data quantification takes into consideration functional cell groups as well as other variables that influence trial-to-trial correlations (similarity of tuning, neuronal distance, receptive field overlap). The paper convincingly demonstrates the robustness of the clustering analysis and of the activity correlation measurements. The calcium imaging results convincingly show that noise correlations are correlated across visual stimuli and are strongest within cell classes which could reflect distributed visual channels. A simple simulation is provided that suggests that recurrent connectivity is required for the stimulus invariance of the results. The paper is well-written and conceptually clear. The figures are beautiful and clear. The arguments are well laid out and the claims appear in large part supported by the data and analysis results (but see weaknesses).

Weaknesses:

An inherent limitation of the approach is that it cannot reveal which anatomical connectivity patterns are responsible for observed network structure. The modeling results presented, however, suggest interestingly that a simple feedforward architecture may not account for fundamental characteristics of the data. A limitation of the study is the lack of a behavioral task. The paper shows nicely that the correlation structure generalizes across visual stimuli. However, the correlation structure could differ widely when animals are actively responding to visual stimuli. I do think that, because of the complexity involved, a characterization of correlations during a visual task is beyond the scope of the current study.

An important question that does not seem addressed (but it is addressed indirectly, I could be mistaken) is the extent to which it is possible to obtain reliable measurements of noise correlation from cell pairs that have widely distinct tuning. L2/3 activity in the visual cortex is quite sparse. The cell groups laid out in Figure S2 have very sharp tuning. Cells whose tuning does not overlap may not yield significant trial-to-trial correlations because they do not show significant responses to the same set of stimuli, if at all any time. Could this bias the noise correlation measurements or explain some of the dependence of the observed noise correlations on signal correlations/similarity of tuning? Could the variable overlap in the responses to visual responses explain the dependence of correlations on cell classes and groups?

With electrophysiology, this issue is less of a problem because many if not most neurons will show some activity in response to suboptimal stimuli. For the present study which uses calcium imaging together with deconvolution, some of the activity may not be visible to the experimenters. The correlation measure is shown to be robust to changes in firing rates due to missing spikes. However, the degree of overlap of responses between cell pairs and their consequences for measures of noise correlations are not explored.

Beyond that comment, the remaining issues are relatively minor issues related to manuscript text, figures, and statistical analyses. There are typos left in the manuscript. Some of the methodological details and results of statistical testing also seem to be missing. Some of the visuals and analyses chosen to examine the data (e.g., box plots) may not be the most effective in highlighting differences across groups. If addressed, this would make a very strong paper.

Reviewer #3 (Public Review):

Summary:

Yu et al harness the capabilities of mesoscopic 2P imaging to record simultaneously from populations of neurons in several visual cortical areas and measure their correlated variability. They first divide neurons into 65 classes depending on their tuning to moving gratings. They found the pairs of neurons of the same tuning class show higher noise correlations (NCs) both within and across cortical areas. Based on these observations and a model they conclude that visual information is broadcast across areas through multiple, discrete channels with little mixing across them.

NCs can reflect indirect or direct connectivity, or shared afferents between pairs of neurons, potentially providing insight on network organization. While NCs have been comprehensively studied in neuron pairs of the same area, the structure of these correlations across areas is much less known. Thus, the manuscripts present novel insights into the correlation structure of visual responses across multiple areas.

Strengths:

The study uses state-of-the art mesoscopic two-photon imaging.

The measurements of shared variability across multiple areas are novel.

The results are mostly well presented and many thorough controls for some metrics are included.

Weaknesses:

I have concerns that the observed large intra-class/group NCs might not reflect connectivity but shared behaviorally driven multiplicative gain modulations of sensory-evoked responses. In this case, the NC structure might not be due to the presence of discrete, multiple channels broadcasting visual information as concluded. I also find that the claim of multiple discrete broadcasting channels needs more support before discarding the alternative hypothesis that a continuum of tuning similarity explains the large NCs observed in groups of neurons.

Specifically:

Major concerns:

(1) Multiplicative gain modulation underlying correlated noise between similarly tuned neurons

(1a) The conclusion that visual information is broadcasted in discrete channels across visual areas relies on interpreting NC as reflecting, direct or indirect connectivity between pairs, or common inputs. However, a large fraction of the activity in the mouse visual system is known to reflect spontaneous and instructed movements, including locomotion and face movements, among others. Running activity and face movements are some of the largest contributors to visual cortex activity and exert a multiplicative gain on sensory-evoked responses (Niell et al, Stringer et al, among others). Thus, trial-by-fluctuations of behavioral state would result in gain modulations that, due to their multiplicative nature, would result in more shared variability in cotuned neurons, as multiplication affects neurons that are responding to the stimulus over those that are not responding ( see Lin et al, Neuron 2015 for a similar point).

As behavioral modulations are not considered, this confound affects most of the conclusions of the manuscript, as it would result in larger NCs the more similar the tuning of the neurons is, independently of any connectivity feature. It seems that this alternative hypothesis can explain most of the results without the need for discrete broadcasting channels or any particular network architecture and should be addressed to support its main claims.

(1b) In Figure 5 the observations are interpreted as evidence for NCs reflecting features of the network architecture, as NCs measured using gratings predicted NC to naturalistic videos. However, it seems from Figure 5 A that signal correlations (SCs) from gratings had non-zero correlations with SCs during naturalistic videos (is this the case?). Thus, neurons that are cotuned to gratings might also tend to be coactivated during the presentation of videos. In this case, they are also expected to be susceptible to shared behaviorally driven fluctuations, independently of any circuit architecture as explained before. This alternative interpretation should be addressed before concluding that these measurements reflect connectivity features.

(2) Discrete vs continuous communication channels

(2a) One of the author's main claims is that the mouse cortical network consists of discrete communication channels. This discreteness is based on an unbiased clustering approach to the tuning of neurons, followed by a manual grouping into six categories in relation to the stimulus space. I believe there are several problems with this claim. First, this clustering approach is inherently trying to group neurons and discretise neural populations. To make the claim that there are 'discrete communication channels' the null hypothesis should be a continuous model. An explicit test in favor of a discrete model is lacking, i.e. are the results better explained using discrete groups vs. when considering only tuning similarity? Second, the fact that 65 classes are recovered (out of 72 conditions) and that manual clustering is necessary to arrive at the six categories is far from convincing that we need to think about categorically different subsets of neurons. That we should think of discrete communication channels is especially surprising in this context as the relevant stimulus parameter axes seem inherently continuous: spatial and temporal frequency. It is hard to motivate the biological need for a discretely organized cortical network to process these continuous input spaces.

(2b) Consequently, I feel the support for discrete vs continuous selective communication is rather inconclusive. It seems that following the author's claims, it would be important to establish if neurons belong to the same groups, rather than tuning similarity is a defining feature for showing large NCs.

Finally, as stated in point 1, the larger NCs observed within groups than across groups might be due to the multiplicative gain of state modulations, due to the larger tuning similarity of the neurons within a class or group.

Author Response:

We appreciate the constructive reviews. We have performed additional analysis to address reviewer concerns, and we will submit a full revision in the near future. Our new analysis confirms that the visual stimulus can account for about a third of the variance in population neural activity. Pupil dynamics only account for a small fraction of the trial-to-trial variability, less than six percent. Once we regress out the stimulus responses and the pupil dynamics, we can use the network activity to predict the trial-to-trial variability of single neuron responses, and about eight percent of the variance is explained. Thus it appears as though multiplicative gain cannot account for the results. As for the concerns about missing spikes, we would like to direct readers to the supplementary figure that addresses that concern. The analysis shows that the correlation measurements are robust to the imprecisions of spike inference from calcium imaging data. Finally, we would also like to take the opportunity to clarify that we make no claim as to the discreteness of tuning classes. The GMM analysis was performed to obtain a data-driven, granular categorization of neuron tuning, to support detailed statistical analysis. We take no position on the discreteness or lack thereof of these groups. We agree that it is an interesting question, and we are happy to provide additional analysis in the revision to address this question. Our main result on functional connectivity structure holds regardless of the discreteness of neuron tuning selectivity.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation