Robust single nucleus RNA sequencing reveals depot-specific cell population dynamics in adipose tissue remodeling during obesity

  1. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
  2. Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Shingo Kajimura
    Beth Israel Deaconess Medical Center, Boston, United States of America
  • Senior Editor
    Lori Sussel
    University of Colorado Anschutz Medical Campus, Aurora, United States of America

Reviewer #1 (Public Review):

Summary:

This manuscript from So et al. describes what is suggested to be an improved protocol for single-nuclei RNA sequencing (snRNA-seq) of adipose tissue. The authors provide evidence that modifications to the existing protocols result in better RNA quality and nuclei integrity than previously observed, with ultimately greater coverage of the transcriptome upon sequencing. Using the modified protocol, the authors compare the cellular landscape of murine inguinal and perigonadal white adipose tissue (WAT) depots harvested from animals fed a standard chow diet (lean mice) or those fed a high-fat diet (mice with obesity).

Strengths:

Overall, the manuscript is well-written, and the data are clearly presented. The strengths of the manuscript rest in the description of an improved protocol for snRNA-seq analysis. This should be valuable for the growing number of investigators in the field of adipose tissue biology that are utilizing snRNA-seq technology, as well as those other fields attempting similar experiments with tissues possessing high levels of RNAse activity.

Moreover, the study makes some notable observations that provide the foundation for future investigation. One observation is the correlation between nuclei size and cell size, allowing for the transcriptomes of relatively hypertrophic adipocytes in perigonadal WAT to be examined. Another notable observation is the identification of an adipocyte subcluster (Ad6) that appears "stressed" or dysfunctional and likely localizes to crown-like inflammatory structures where pro-inflammatory immune cells reside.

Weaknesses:

Analogous studies have been reported in the literature, including a notable study from Savari et al. (Cell Metabolism). This somewhat diminishes the novelty of some of the biological findings presented here. Moreover, a direct comparison of the transcriptomic data derived from the new vs. existing protocols (i.e. fully executed side by side) was not presented. As such, the true benefit of the protocol modifications cannot be fully understood.

Reviewer #2 (Public Review):

Summary:

In the present manuscript So et al utilize single-nucleus RNA sequencing to characterize cell populations in lean and obese adipose tissues.

Strengths:

The authors utilize a modified nuclear isolation protocol incorporating VRC that results in higher-quality sequencing reads compared with previous studies.

Weaknesses:

The use of VRC to enhance snRNA-seq has been previously published in other tissues. The snRNA-seq snRNA-seq data sets presented in this manuscript, when compared with numerous previously published single-cell analyses of adipose tissue, do not represent a significant scientific advance.

Figure 1-3: The snRNA-seq data obtained by the authors using their enhanced protocol does not represent a significant improvement in cell profiling for the majority of the highlighted cell types including APCs, macrophages, and lymphocytes. These cell populations have been extensively characterized by cytoplasmic scRNA-seq which can achieve sufficient sequencing depth, and thus this study does not contribute meaningful additional insight into these cell types. The authors note an increase in the number of rare endothelial cell types recovered, however this is not translated into any kind of functional analysis of these populations.

Figure 4: The authors did not provide any evidence that the relative fluorescent brightness of GFP and mCherry is a direct measure of the nuclear size, and the nuclear size is only a moderate correlation with the cell size. Thus sorting the nuclei based on GFP/mCherry brightness is not a great proxy for adipocyte diameter. Furthermore, no meaningful insights are provided about the functional significance of the reported transcriptional differences between small and large adipocyte nuclei.

Figure 5-6: The Ad6 population is highly transcriptionally analogous to the mAd3 population from Emont et al, and is thus not a novel finding. Furthermore, in the present data set, the authors conclude that Ad6 are likely stressed/dying hypertrophic adipocytes with a global loss of gene expression, which is a well-documented finding in eWAT > iWAT, for which the snRNA-seq reported in the present manuscript does not provide any novel scientific insight.

Reviewer #3 (Public Review):

Summary:

The authors aimed to improve single-nucleus RNA sequencing (snRNA-seq) to address current limitations and challenges with nuclei and RNA isolation quality. They successfully developed a protocol that enhances RNA preservation and yields high-quality snRNA-seq data from multiple tissues, including a challenging model of adipose tissue. They then applied this method to eWAT and iWAT from mice fed either a normal or high-fat diet, exploring depot-specific cellular dynamics and gene expression changes during obesity. Their analysis included subclustering of SVF cells and revealed that obesity promotes a transition in APCs from an early to a committed state and induces a pro-inflammatory phenotype in immune cells, particularly in eWAT. In addition to SVF cells, they discovered six adipocyte subpopulations characterized by a gradient of unique gene expression signatures. Interestingly, a novel subpopulation, termed Ad6, comprised stressed and dying adipocytes with reduced transcriptional activity, primarily found in eWAT of mice on a high-fat diet. Overall, the methodology is sound, the writing is clear, and the conclusions drawn are supported by the data presented. Further research based on these findings could pave the way for potential novel interventions in obesity and metabolic disorders, or for similar studies in other tissues or conditions.

Strengths:

• The authors developed a robust snRNA-seq technique that preserves the integrity of the nucleus and RNA across various tissue types, overcoming the challenges of existing methods.

• They identified adipocyte subpopulations that follow adaptive or pathological trajectories during obesity.

• The study reveals depot-specific differences in adipose tissues, which could have implications for targeted therapies.

Weaknesses:

• The adipose tissues were collected after 10 weeks of high-fat diet treatment, lacking the intermediate time points for identifying early markers or cell populations during the transition from healthy to pathological adipose tissue.

• The expansion of the Ad6 subpopulation in obese iWAT and gWAT is interesting. The author claims that Ad6 exhibited a substantial increase in eWAT and a moderate rise in iWAT (Figure 4C). However, this adipocyte subpopulation remains the most altered in iWAT upon obesity. Could the authors elaborate on why there is a scarcity of adipocytes with ROS reporter and B2M in obese iWAT?

• While the study provides extensive data on mouse models, the potential translation of these findings to human obesity remains uncertain.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation