Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
- Senior EditorDavid RonUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 (Public Review):
The detection sensitivity and accuracy are unclear.
In this manuscript, Zhou et al describe a deaminase and reader protein-assisted RNA m5C sequencing method. The general strategy is similar to DART-seq for m6A sequencing, but the difference is that in DART-seq, m6A sites are always followed by C which can be deaminated by fused APOBEC1 to provide a high resolution of m6A sites, while in the case of m5C, no such obvious conserved motifs for m5C sites exist, therefore, the detection resolution is much lower. In addition, the authors used two known m5C binding proteins ALYREF and YBX1 to guide the fused deaminases, but it is not clear whether these two binding proteins can bind most m5C sites and compete with other m5C binding proteins.
It is well known that two highly modified m5C sites exist in 28S RNA and many m5C sites exist in tRNA, the authors should validate their methods first by detecting these known m5C sites and evaluate the possible false positives in rRNA and tRNA. In mRNA, it is not clear what is the overlap between the technical replicates. In Figures 4A and 4C, they detected more than 10K m5C sites, and most of them did not overlap with sites uncovered by other methods. These numbers are much larger than expected and possibly most of them are false positives. Besides, it is not clear what is the detection sensitivity and accuracy since the method is neither single base resolution nor quantitative. There are no experiments to show that the detected m5C sites are responsive to the writer proteins such as NSUN2 and NSUN6, and the determination of the motifs of these writer proteins.
Reviewer #2 (Public Review):
The fledgling field of epitranscriptomics has encountered various technical roadblocks with implications for the validity of early epitranscriptomics mapping data. As a prime example, the low specificity of (supposedly) modification-specific antibodies for the enrichment of modified RNAs, has been ignored for quite some time and is only now recognized for its dismal reproducibility (between different labs), which necessitates the development of alternative methods for modification detection. Furthermore, early attempts to map individual epitranscriptomes using sequencing-based techniques are largely characterized by the deliberate avoidance of orthogonal approaches aimed at confirming the existence of RNA modifications that have been originally identified.
Improved methodology, the inclusion of various controls, and better mapping algorithms as well as the application of robust statistics for the identification of false-positive RNA modification calls have allowed revisiting original (seminal) publications whose early mapping data allowed making hyperbolic claims about the number, localization and importance of RNA modifications, especially in mRNA. Besides the existence of m6A in mRNA, the detectable incidence of RNA modifications in mRNAs has drastically dropped.
As for m5C, the subject of the manuscript submitted by Zhou et al., its identification in mRNA goes back to Squires et al., 2012 reporting on >10.000 sites in mRNA of a human cancer cell line, followed by intermittent findings reporting on pretty much every number between 0 to > 100.000 m5C sites in different human cell-derived mRNA transcriptomes. The reason for such discrepancy is most likely of a technical nature. Importantly, all studies reporting on actual transcript numbers that were m5C-modified relied on RNA bisulfite sequencing, an NGS-based method, that can discriminate between methylated and non-methylated Cs after chemical deamination of C but not m5C. RNA bisulfite sequencing has a notoriously high background due to deamination artifacts, which occur largely due to incomplete denaturation of double-stranded regions (denaturing-resistant) of RNA molecules. Furthermore, m5C sites in mRNAs have now been mapped to regions that have not only sequence identity but also structural features of tRNAs. Various studies revealed that the highly conserved m5C RNA methyltransferases NSUN2 and NSUN6 do not only accept tRNAs but also other RNAs (including mRNAs) as methylation substrates, which in combination account for most of the RNA bisulfite-mapped m5C sites in human mRNA transcriptomes. Is m5C in mRNA only a result of the Star activity of tRNA or rRNA modification enzymes, or is their low stoichiometry biologically relevant?
In light of the short-comings of existing tools to robustly determine m5C in transcriptomes, other methods - like DRAM-seq, that allow the mapping of m5C independently of ex-situ RNA treatment with chemicals - are needed to arrive at a more solid "ground state", from which it will be possible to state and test various hypotheses as to the biological function of m5C, especially in lowly abundant RNAs such as mRNA.
Importantly, the identification of >10.000 sites containing m5C increases through DRAM-Seq, increases the number of potential m5C marks in human cancer cells from a couple of 100 (after rigorous post-hoc analysis of RNA bisulfite sequencing data) by orders of magnitude. This begs the question of whether or not the application of these editing tools results in editing artefacts overstating the number of actual m5C sites in the human cancer transcriptome.
Comments:
(1) The use of two m5C reader proteins is likely a reason for the high number of edits introduced by the DRAM-Seq method. Both ALYREF and YBX1 are ubiquitous proteins with multiple roles in RNA metabolism including splicing and mRNA export. It is reasonable to assume that both ALYREF and YBX1 bind to many mRNAs that do not contain m5C.
To substantiate the author's claim that ALYREF or YBX1 binds m5C-modified RNAs to an extent that would allow distinguishing its binding to non-modified RNAs from binding to m5C-modified RNAs, it would be recommended to provide data on the affinity of these, supposedly proven, m5C readers to non-modified versus m5C-modified RNAs. To do so, this reviewer suggests performing experiments as described in Slama et al., 2020 (doi: 10.1016/j.ymeth.2018.10.020). However, using dot blots like in so many published studies to show modification of a specific antibody or protein binding, is insufficient as an argument because no antibody, nor protein, encounters nanograms to micrograms of a specific RNA identity in a cell. This issue remains a major caveat in all studies using so-called RNA modification reader proteins as bait for detecting RNA modifications in epitranscriptomics research. It becomes a pertinent problem if used as a platform for base editing similar to the work presented in this manuscript.
(2) Since the authors use a system that results in transient overexpression of base editor fusion proteins, they might introduce advantageous binding of these proteins to RNAs. It is unclear, which promotor is driving construct expression but it stands to reason that part of the data is based on artifacts caused by overexpression. Could the authors attempt testing whether manipulating expression levels of these fusion proteins results in different editing levels at the same RNA substrate?
(3) Using sodium arsenite treatment of cells as a means to change the m5C status of transcripts through the downregulation of the two major m5C writer proteins NSUN2 and NSUN6 is problematic and the conclusions from these experiments are not warranted. Sodium arsenite is a chemical that poisons every protein containing thiol groups. Not only do NSUN proteins contain cysteines but also the base editor fusion proteins. Arsenite will inactivate these proteins, hence the editing frequency will drop, as observed in the experiments shown in Figure 5, which the authors explain with fewer m5C sites to be detected by the fusion proteins.
(4) The authors should move high-confidence editing site data contained in Supplementary Tables 2 and 3 into one of the main Figures to substantiate what is discussed in Figure 4A. However, the data needs to be visualized in another way than an Excel format. Furthermore, Supplementary Table 2 does not contain a description of the columns, while Supplementary Table 3 contains a single row with letters and numbers.
(5) The authors state that "plotting the distribution of DRAM-seq editing sites in mRNA segments (5'UTR, CDS, and 3'UTR) highlighted a significant enrichment near the initiation codon (Figure 3F).", which is not true when this reviewer looks at Figure 3F.
(6) The authors state that "In contrast, cells expressing the deaminase exhibited a distinct distribution pattern of editing sites, characterized by a prevalence throughout the 5'UTR.", which is not true when this reviewer looks at Figure 3F.
(7) The authors claim in the final conclusion: "In summary, we developed a novel deaminase and reader protein assisted RNA m5C methylation approach...", which is not what the method entails. The authors deaminate As or Us close to 5mC sites based on the binding of a deaminase-containing protein.
(8) The authors claim that "The data supporting the findings of this study are available within the article and its Supplementary Information." However, no single accession number for the deposited sequencing data can be found in the text or the supplementary data. Without the primary data, none of the claims can be verified.