Electrophysiological dynamics of a triple network model of cognitive control: A multi-experiment replication

  1. Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine Stanford, CA 94305
  2. Department of Neurology & Neurological Sciences, Stanford University School of Medicine Stanford, CA 94305
  3. Wu Tsai Neurosciences Institute, Stanford University School of Medicine Stanford, CA 94305

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Nicole Swann
    University of Oregon, Eugene, United States of America
  • Senior Editor
    Michael Frank
    Brown University, Providence, United States of America

Reviewer #1 (Public Review):

Summary:

Das and Menon describe an analysis of a large open-source iEEG dataset (UPENN-RAM). From encoding and recall phases of memory tasks, they analyzed power and phase-transfer entropy as a measure of directed information flow in regions across a hypothesized tripartite network system. The anterior insula (AI) was found to have heightened high gamma power during encoding and retrieval, which corresponded to suppression of high gamma power in the posterior cingulate cortex (PCC) during encoding but not recall. In contrast, directed information flow from (but not to) AI to mPFC/PCC and dorsal posterior parietal/middle frontal cortex is high during both time periods when PTE is analyzed with broadband but not narrowband activity. They claim that these findings significantly advance an understanding of how network communication facilitates cognitive operations such as control over memory and that the AI of the salience network (SN) is responsible for governing the switch between the frontoparietal network (FPN) and default-mode network (DMN) when shifting between externally- and internally-driven processing.

I find this question interesting and important and agree with the authors that iEEG presents a unique opportunity to investigate the temporal dynamics within network nodes. However, I am not convinced that their claims are supported by the results currently presented. In particular, the fact that network-level communication is not modulated significantly compared to rest and does not relate to behavior suggests that PTE analyses may not be tapping into task-relevant communication. Moreover, dissociation of network effects - present during both encoding and recall - from local power suppression effects - present only during encoding - suggests that these sets of results may index separate and not unitary task processes.

Strengths:

- The authors present results from an impressively sized iEEG sample. For reader context, this type of invasive human data is difficult and time-consuming to collect and many similar studies in high-level journals include 5-20 participants, typically not all of whom have electrodes in all regions of interest. It is excellent that they have been able to leverage open-source data in this way.

- Preprocessing of iEEG data also seems sensible and appropriate based on field standards.

- The authors tackle the replication issues inherent in much of the literature by replicating findings across task contexts, demonstrating that the principles of network communication evidenced by their results generalize in multiple task memory contexts. Again, the number of iEEG patients who have multiple tasks' worth of data is impressive.

Weaknesses:

• The motivation for investigating the tripartite network during memory tasks is not currently well-elaborated. Though the authors mention, for example, that "the formation of episodic memories relies on the intricate interplay between large-scale brain networks (p. 4)", there are no citations provided for this statement, and the reader is unable to evaluate whether the nodes and networks evidenced to support these processes are the same as networks measured here.

• In addition, though the tripartite network has been proposed to support cognitive control processes, and the neural basis of cognitive control is the framed focus of this work, the authors do not demonstrate that they have measured cognitive control in addition to simple memory encoding and retrieval processes. Tasks that have investigated cognitive control over memory (such as those cited on p. 13 - Badre et al., 2005; Badre & Wagner, 2007; Wagner et al., 2001; Wagner et al., 2005) generally do not simply include encoding, delay, and recall (as the tasks used here), but tend to include some manipulation that requires participants to engage control processes over memory retrieval, such as task rules governing what choice should be made at recall (e.g., from Badre et al., 2005 Fig. 1: congruency of match, associative strength, number of choices, semantic similarity). Moreover, though there are task-responsive signatures in the nodes of the tripartite networks, concluding that cognitive control is present because cognitive control networks are active would be a reverse inference.

• It is currently unclear if the directed information flow from AI to DMN and FPN nodes truly arises from task-related processes such as cognitive control or if it is a function of static brain network characteristics constrained by anatomy (such as white matter connection patterns, etc.). This is a concern because the authors did not find that influences of AI on DMN or FPN are increased relative to a resting baseline (collected during the task) or that directed information flow differs in successful compared to unsuccessful retrieval. I doubt that this AI influence is 1) supporting a switch between the DMN and FPN via the SN or 2) relevant for behavior if it doesn't differ from baseline-active task or across accuracy conditions. An additional comparison that may help investigate whether this is reflective of static connectivity characteristics would be a baseline comparison during non-task rest or sleep periods.

• Related to the above concern, it is also questionable how directed information flow from AI facilitates switching between FPN and DMN during both encoding and recall if high gamma activity does not significantly differ in AI versus PCC or mPFC during recall as it does during encoding. It seems erroneous to conclude that the network-level communication is happening or happening with the same effect during both task time points when these effects are decoupled in such a way from the power findings.

• Missing information about the methods used for time-frequency conversion for power calculation and the power normalization/baseline-correction procedure bars a thorough evaluation of power calculation methods and results.

If revisions to the manuscript can address concerns about directed information flow possibly being due to anatomical constraints - such as by indicating that directed information flow is not present during non-task rest or sleep - this work may convey important information about the structure and order of communication between these networks during attention to tasks in general. However, the ability of the findings to address cognitive control-specific communication and the nature of neurophysiological mechanisms of this communication - as opposed to the temporal order and structure of recruited networks - may be limited.

Because phase-transfer entropy is presented as a "causal" analysis in this investigation (PTE), I also believe it is important to highlight for readers recent discussions surrounding the description of "causal mechanisms" in neuroscience (see "Confusion about causation" section from Ross and Bassett, 2024, Nature Neuroscience). A large proportion of neuroscientists (admittedly, myself included) use "causal" only to refer to a mechanism whose modulation or removal (with direct manipulation, such as by lesion or stimulation) is known to change or control a given outcome (such as a successful behavior). As Ross and Bassett highlight, it is debatable whether such mechanistic causality is captured by Granger "causality" (a.k.a. Granger prediction) or the parametric PTE, and the imprecise use of "causation" may be confusing. The authors could consider amending language regarding this analysis if they are concerned about bridging these definitions of causality across a wide audience.

Reviewer #2 (Public Review):

In this study, the authors leverage a large public dataset of intracranial EEG (the University of Pennsylvania RAM repository) to examine electrophysiologic network dynamics involving the participation of salience, frontoparietal, and default mode networks in the completion of several episodic memory tasks. They do this through a focus on the anterior insula (AI; salience network), which they hypothesize may help switch engagement between the DMN and FPN in concert with task demands. By analyzing high-gamma spectral power and phase transfer entropy (PTE; a putative measure of information "flow"), they show that the AI shows higher directed PTE towards nodes of both the DMN and FPN, during encoding and recall, across multiple tasks. They further demonstrate that high-gamma power in the PCC/precuneus is decreased relative to the AI during memory encoding. They interpret these results as evidence of "triple-network" control processes in memory tasks, governed by a key role of the AI.

I commend the authors on leveraging this large public dataset to help contextualize network models of brain function with electrophysiological mechanisms - a key problem in much of the fMRI literature. I also appreciate that the authors emphasized replicability across multiple memory tasks, in an effort to demonstrate conserved or fundamental mechanisms that support a diversity of cognitive processes. However, I believe that their strong claims regarding causal influences within circumscribed brain networks cannot be supported by the evidence as presented. In my efforts to clearly communicate these inadequacies, I will suggest several potential analyses for the authors to consider that might better link the data to their central hypotheses.

(1) As a general principle, the effects that the authors show - both in regards to their high-gamma power analysis and PTE analysis - do not offer sufficient specificity for a reader to understand whether these are general effects that may be repeated throughout the brain, or whether they reflect unique activity to the networks/regions that are laid out in the Introduction's hypothesis. This lack of specificity manifests in several ways, and is best communicated through examples of control analyses.

First, the PTE analysis is focused solely on the AI's interactions with nodes of the DMN and FPN; while it makes sense to focus on this putative "switch" region, the fact that the authors report significant PTE from the AI to nodes of both networks, in encoding and retrieval, across all tasks and (crucially) also at baseline, raises questions about the meaningfulness of this statistic. One way to address this concern would be to select a control region that would be expected to have little/no directed causal influence on these networks and repeat the analysis. Alternatively (or additionally), the authors could examine the time course of PTE as it evolves throughout an encoding/retrieval interval, and relate that to the timing of behavioral events or changes in high-gamma power. This would directly address an important idea raised in their own Discussion, "the AI is well-positioned to dynamically engage and disengage with other brain areas."

Second, the authors state that high-gamma suppression in the PCC/precuneus relative to the AI is an anatomically specific signature that is not present in the FPN. This claim does not seem to be supported by their own evidence as presented in the Supplemental Data (Figures S2 and S3), which to my eye show clear evidence of relative suppression in the MFG and dPPC (e.g. S2a and S3a, most notably) which are notated as "significant" with green bars. I appreciate that the magnitude of this effect may be greater in the PCC/precuneus, but if this is the claim it should be supported by appropriate statistics and interpretation.

(2) I commend the authors on emphasizing replicability, but I found their Bayes Factor (BF) analysis to be difficult to interpret and qualitatively inconsistent with the results that they show. For example, the authors state that BF analysis demonstrates "high replicability" of the gamma suppression effect in Figure 3a with that of 3c and 3d. While it does appear that significant effects exist across all three tasks, the temporal structure of high gamma signals appears markedly different between the two in ways that may be biologically meaningful. Moreover, it appears that the BF analysis did not support replicability between VFR and CATVFR, which is very surprising; these are essentially the same tasks (merely differing in the presence of word categories) and would be expected to have the highest degree of concordance, not the lowest. I would suggest the authors try to analytically or conceptually reconcile this surprising finding.

To aid in interpretability, it would be extremely helpful for the authors to assess across-task similarity in high-gamma power on a within-subject basis, which they are well-powered to do. For example, could they report the correlation coefficient between HGP timecourses in paired-associates versus free-recall tasks, to better establish whether these effects are consistent on a within-subject basis? This idea could similarly be extended to the PTE analysis. Across-subject correlations would also be a welcome analysis that may provide readers with better-contextualized effect sizes than the output of a Bayes Factor analysis.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation