1. Michael L Reese  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States

Organisms that grow in close contact with one another often co-evolve. This is particularly evident in pathogens and their hosts, with each always needing to stay one small step ahead of the other in order to survive. This evolutionary competition has given rise to the systems of immune molecules that hosts use to recognize and neutralize invading pathogens, and also to the effector molecules that pathogens use to survive attack by the immune system. A prime example of this can be seen in the interactions between a class of enzymes called the immune-related GTPases (IRG proteins) and the pathogens that they recognize and destroy (Kim et al., 2012). It is known that IRG proteins work by assembling on the surface of the vacuoles within which the pathogens replicate, but the details of this mechanism are poorly understood.

Now, in eLife, Jonathan Howard of the University of Cologne and colleagues present striking evidence that the co-evolution of IRG proteins with Toxoplasma gondii—the parasite that causes toxoplasmosis—has been an important driving force in the functional evolution of the IRG system (Lilue et al., 2013). Howard and colleagues—including Jingtao Lilue as first author, Urs Muller and Tobias Steinfeldt—found that mice derived from wild mice were resistant to strains of the parasite that were lethal to laboratory mice. Remarkably, they demonstrated that this resistance was due to genetic variation in one particular form of IRG protein, named Irgb2-b1: they found that certain alleles of Irgb2-b1 appeared to inhibit the activity of the effector molecules secreted by the parasite, which themselves have evolved to inactivate the IRG system.

As it enters a new host cell, Toxoplasma secretes an active kinase called ROP18 and a diverse family of pseudokinases, called ROP5. The ROP5 pseudokinases appear to sequester the IRG proteins and then present them for phosphorylation by ROP18 (Fleckenstein et al., 2012). The process of phosphorylation inactivates the IRG proteins, which prevents them from assembling on the surface of the vacuole. This, in turn, allows the parasites to replicate (Figure 1; Steinfeldt et al., 2010; Fentress et al., 2010). There are considerable differences in the virulence (to mice) of the major strains of Toxoplasma, and genetic variations in ROP5 and ROP18 can explain almost all of these differences (Saeij et al., 2006; Taylor et al., 2006; Behnke et al., 2011; Reese et al., 2011). This highlights the importance of the IRG system in the control of Toxoplasma infection in mice, and the pressure that competition with this system has placed on the parasite.

Hosts vs parasites.

Toxoplasma parasites can kill laboratory mice (left) because they secrete effector molecules (ROP5 & ROP18) that prevent the effector IRG proteins (dark green) in the immune system of the mice from doing their job, which is to prevent the Toxoplasma parasites (grey) replicating themselves inside a vacuole. Lilue et al. show that in mice derived from wild mice (right), a particular isoform of an IRG protein (Irgb2-b1) binds to the ROP5 molecules, which means that the effector IRG proteins can assemble on the surface of the vacuole. This allows wild-derived mice to control an otherwise lethal infection in a way that, seemingly paradoxically, enables the survival of both the host and the parasite (which survives inside cysts in the brain and muscle tissue of the host).

As is typical of genes under strong selective pressure, the IRG genes differ both in copy number and in coding sequence in closely related species and even, as described by Lilue et al., among individuals within the same species. Previously the different forms of an IRG protein have been grouped into two distinct functional classes: effector IRG proteins that destroy the vacuoles inside which the pathogens replicate, and regulatory IRGs that are thought to inhibit premature activation of the system (Hunn et al., 2011). However, Irgb2-b1—the form of the protein identified by Lilue et al.—appears to belong to a third class of IRG proteins that recognize a particular pathogen effector rather than the pathogen itself. They found that Irgb2-b1 only attached itself to Toxoplasma vacuoles that were already coated with ROP5. Moreover, Irgb2-b1 loading appeared to block the activity of the ROP5 and ROP18 proteins. This left the effector IRG proteins free to assemble on the surface of the vacuole, thus leading to the destruction of the parasite (Figure 1). Strikingly, mice that carried the protective allele of Irgb2-b1 were able to survive acute infection with a highly virulent strain of the parasite, whereas infection by just one parasite of the same strain would kill a laboratory mouse.

Toxoplasma is also a survivor—as the acute infection ends, the parasite switches to a slow-growing form that becomes enclosed within cysts in the brain and muscle of the host, as was the case with the wild mice studied by Lilue et al. When a host is killed and eaten by a carnivore, the parasite switches back to a fast growing stage to infect its new host. Because strains of the parasite that secrete the virulent versions of both ROP5 and ROP18 are able to completely defeat the IRG system in laboratory mice, it was thought that these strains could not have co-evolved with mice, because the death of the host can be an evolutionary dead-end for a pathogen. The fact that Irgb2-b1 derived from wild mice represents a specific countermeasure to the parasite effectors provides a strong argument for co-evolution. The work of Lilue, Muller, Steinfeldt and Howard thus reminds us to look beyond lab-adapted organisms and examine biology in the wild to discover its full diversity.

References

Article and author information

Author details

  1. Michael L Reese

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    michael.reese@utsouthwestern.edu
    Competing interests
    The author declares that no competing interests exist.

Publication history

  1. Version of Record published:

Copyright

© 2013, Reese

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 590
    views
  • 51
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael L Reese
(2013)
Co-evolution: Immune to defeat
eLife 2:e01599.
https://doi.org/10.7554/eLife.01599

Further reading

    1. Microbiology and Infectious Disease
    Li Zhang, Fen Hu ... Hang Yang
    Research Article

    Phage-derived peptidoglycan hydrolases (i.e. lysins) are considered promising alternatives to conventional antibiotics due to their direct peptidoglycan degradation activity and low risk of resistance development. The discovery of these enzymes is often hampered by the limited availability of phage genomes. Herein, we report a new strategy to mine active peptidoglycan hydrolases from bacterial proteomes by lysin-derived antimicrobial peptide-primed screening. As a proof-of-concept, five peptidoglycan hydrolases from the Acinetobacter baumannii proteome (PHAb7-PHAb11) were identified using PlyF307 lysin-derived peptide as a template. Among them, PHAb10 and PHAb11 showed potent bactericidal activity against multiple pathogens even after treatment at 100°C for 1 hr, while the other three were thermosensitive. We solved the crystal structures of PHAb8, PHAb10, and PHAb11 and unveiled that hyper-thermostable PHAb10 underwent a unique folding-refolding thermodynamic scheme mediated by a dimer-monomer transition, while thermosensitive PHAb8 formed a monomer. Two mouse models of bacterial infection further demonstrated the safety and efficacy of PHAb10. In conclusion, our antimicrobial peptide-primed strategy provides new clues for the discovery of promising antimicrobial drugs.

    1. Ecology
    2. Microbiology and Infectious Disease
    Tom Clegg, Samraat Pawar
    Research Article Updated

    Predicting how species diversity changes along environmental gradients is an enduring problem in ecology. In microbes, current theories tend to invoke energy availability and enzyme kinetics as the main drivers of temperature-richness relationships. Here, we derive a general empirically-grounded theory that can explain this phenomenon by linking microbial species richness in competitive communities to variation in the temperature-dependence of their interaction and growth rates. Specifically, the shape of the microbial community temperature-richness relationship depends on how rapidly the strength of effective competition between species pairs changes with temperature relative to the variance of their growth rates. Furthermore, it predicts that a thermal specialist-generalist tradeoff in growth rates alters coexistence by shifting this balance, causing richness to peak at relatively higher temperatures. Finally, we show that the observed patterns of variation in thermal performance curves of metabolic traits across extant bacterial taxa is indeed sufficient to generate the variety of community-level temperature-richness responses observed in the real world. Our results provide a new and general mechanism that can help explain temperature-diversity gradients in microbial communities, and provide a quantitative framework for interlinking variation in the thermal physiology of microbial species to their community-level diversity.