A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis

  1. Yumei Wu
  2. Eileen T O'Toole
  3. Martine Girard
  4. Brigitte Ritter
  5. Mirko Messa
  6. Xinran Liu
  7. Peter McPherson
  8. Shawn M Ferguson
  9. Pietro De Camilli  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. University of Colorado, United States
  3. Montreal Neurological Institute, McGill University, Canada
  4. Boston University School of Medicine, Canada

Abstract

The exocytosis of synaptic vesicles (SVs) elicited by potent stimulation is rapidly compensated by bulk endocytosis of SV membranes leading to large endocytic vacuoles ('bulk' endosomes). Subsequently, these vacuoles disappear in parallel with the reappearance of new SVs. We have used synapses of dynamin 1 and 3 double knock-out neurons, where clathrin-mediated endocytosis is dramatically impaired, to gain insight into the poorly understood mechanisms underlying this process. Massive formation of bulk endosomes was not defective, but rather enhanced, in the absence of dynamin 1 and 3. The subsequent conversion of bulk endosomes into SVs was not accompanied by the accumulation of clathrin coated buds on their surface and this process proceeded even after further clathrin knock-down, suggesting its independence of clathrin. These findings support the existence of a pathway for SV reformation that bypasses the requirement for clathrin and dynamin 1/3 and demonstrates the plasticity of the SV recycling process.

Article and author information

Author details

  1. Yumei Wu

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eileen T O'Toole

    University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Martine Girard

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Brigitte Ritter

    Boston University School of Medicine, Boston, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Mirko Messa

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xinran Liu

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter McPherson

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Shawn M Ferguson

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Pietro De Camilli

    Yale University School of Medicine, New Haven, United States
    For correspondence
    pietro.decamilli@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Germany

Ethics

Animal experimentation: the present study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#07422-2012) of Yale university. All animals were euthanized with CO2 and embryos were used for primary neuron culture.

Version history

  1. Received: October 1, 2013
  2. Accepted: June 24, 2014
  3. Accepted Manuscript published: June 24, 2014 (version 1)
  4. Accepted Manuscript updated: June 30, 2014 (version 2)
  5. Version of Record published: July 29, 2014 (version 3)

Copyright

© 2014, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,165
    views
  • 829
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yumei Wu
  2. Eileen T O'Toole
  3. Martine Girard
  4. Brigitte Ritter
  5. Mirko Messa
  6. Xinran Liu
  7. Peter McPherson
  8. Shawn M Ferguson
  9. Pietro De Camilli
(2014)
A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis
eLife 3:e01621.
https://doi.org/10.7554/eLife.01621

Share this article

https://doi.org/10.7554/eLife.01621

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Aaron JO Lewis, Frank Zhong ... Ramanujan S Hegde
    Research Article

    The protein translocon at the endoplasmic reticulum comprises the Sec61 translocation channel and numerous accessory factors that collectively facilitate the biogenesis of secretory and membrane proteins. Here, we leveraged recent advances in cryo-electron microscopy (cryo-EM) and structure prediction to derive insights into several novel configurations of the ribosome-translocon complex. We show how a transmembrane domain (TMD) in a looped configuration passes through the Sec61 lateral gate during membrane insertion; how a nascent chain can bind and constrain the conformation of ribosomal protein uL22; and how the translocon-associated protein (TRAP) complex can adjust its position during different stages of protein biogenesis. Most unexpectedly, we find that a large proportion of translocon complexes contains RAMP4 intercalated into Sec61’s lateral gate, widening Sec61’s central pore and contributing to its hydrophilic interior. These structures lead to mechanistic hypotheses for translocon function and highlight a remarkably plastic machinery whose conformations and composition adjust dynamically to its diverse range of substrates.

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.