A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis

  1. Yumei Wu
  2. Eileen T O'Toole
  3. Martine Girard
  4. Brigitte Ritter
  5. Mirko Messa
  6. Xinran Liu
  7. Peter S McPherson
  8. Shawn M Ferguson
  9. Pietro De Camilli  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. University of Colorado, United States
  3. Montreal Neurological Institute, McGill University, Canada
  4. Boston University School of Medicine, Canada

Abstract

The exocytosis of synaptic vesicles (SVs) elicited by potent stimulation is rapidly compensated by bulk endocytosis of SV membranes leading to large endocytic vacuoles ('bulk' endosomes). Subsequently, these vacuoles disappear in parallel with the reappearance of new SVs. We have used synapses of dynamin 1 and 3 double knock-out neurons, where clathrin-mediated endocytosis is dramatically impaired, to gain insight into the poorly understood mechanisms underlying this process. Massive formation of bulk endosomes was not defective, but rather enhanced, in the absence of dynamin 1 and 3. The subsequent conversion of bulk endosomes into SVs was not accompanied by the accumulation of clathrin coated buds on their surface and this process proceeded even after further clathrin knock-down, suggesting its independence of clathrin. These findings support the existence of a pathway for SV reformation that bypasses the requirement for clathrin and dynamin 1/3 and demonstrates the plasticity of the SV recycling process.

Article and author information

Author details

  1. Yumei Wu

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eileen T O'Toole

    University of Colorado, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Martine Girard

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Brigitte Ritter

    Boston University School of Medicine, Boston, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Mirko Messa

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xinran Liu

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter S McPherson

    Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Shawn M Ferguson

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Pietro De Camilli

    Yale University School of Medicine, New Haven, United States
    For correspondence
    pietro.decamilli@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Reinhard Jahn, Max Planck Institute for Biophysical Chemistry, Germany

Ethics

Animal experimentation: the present study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#07422-2012) of Yale university. All animals were euthanized with CO2 and embryos were used for primary neuron culture.

Version history

  1. Received: October 1, 2013
  2. Accepted: June 24, 2014
  3. Accepted Manuscript published: June 24, 2014 (version 1)
  4. Accepted Manuscript updated: June 30, 2014 (version 2)
  5. Version of Record published: July 29, 2014 (version 3)

Copyright

© 2014, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,166
    views
  • 829
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yumei Wu
  2. Eileen T O'Toole
  3. Martine Girard
  4. Brigitte Ritter
  5. Mirko Messa
  6. Xinran Liu
  7. Peter S McPherson
  8. Shawn M Ferguson
  9. Pietro De Camilli
(2014)
A dynamin 1-, dynamin 3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis
eLife 3:e01621.
https://doi.org/10.7554/eLife.01621

Share this article

https://doi.org/10.7554/eLife.01621

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Jiabin Pan, Rui Zhou ... Xiang-dong Li
    Research Article

    Transport and localization of melanosome at the periphery region of melanocyte are depended on myosin-5a (Myo5a), which associates with melanosome by interacting with its adaptor protein melanophilin (Mlph). Mlph contains four functional regions, including Rab27a-binding domain, Myo5a GTD-binding motif (GTBM), Myo5a exon F-binding domain (EFBD), and actin-binding domain (ABD). The association of Myo5a with Mlph is known to be mediated by two specific interactions: the interaction between the exon-F-encoded region of Myo5a and Mlph-EFBD and that between Myo5a-GTD and Mlph-GTBM. Here, we identify a third interaction between Myo5a and Mlph, that is, the interaction between the exon-G-encoded region of Myo5a and Mlph-ABD. The exon-G/ABD interaction is independent from the exon-F/EFBD interaction and is required for the association of Myo5a with melanosome. Moreover, we demonstrate that Mlph-ABD interacts with either the exon-G or actin filament, but cannot interact with both of them simultaneously. Based on above findings, we propose a new model for the Mlph-mediated Myo5a transportation of melanosomes.

    1. Cell Biology
    Yuhao Wang, Linhao Ruan ... Rong Li
    Research Article

    Mitochondria are the cellular energy hub and central target of metabolic regulation. Mitochondria also facilitate proteostasis through pathways such as the ‘mitochondria as guardian in cytosol’ (MAGIC) whereby cytosolic misfolded proteins (MPs) are imported into and degraded inside mitochondria. In this study, a genome-wide screen in Saccharomyces cerevisiae uncovered that Snf1, the yeast AMP-activated protein kinase (AMPK), inhibits the import of MPs into mitochondria while promoting mitochondrial biogenesis under glucose starvation. We show that this inhibition requires a downstream transcription factor regulating mitochondrial gene expression and is likely to be conferred through substrate competition and mitochondrial import channel selectivity. We further show that Snf1/AMPK activation protects mitochondrial fitness in yeast and human cells under stress induced by MPs such as those associated with neurodegenerative diseases.