Cerebellar Malformation: Deficits in early neural tube identity found in CHARGE syndrome
CHARGE syndrome is a genetic condition that involves multiple malformations in newly born children. The acronym stands for coloboma (a hole in the eye), heart defects, choanal atresia (a blockage of the nasal passage), retarded growth and development, genital abnormalities, and ear anomalies (Lalani et al., 2012). Now, in eLife, Albert Basson of King’s College London (KCL) and co-workers—including Tim Yu of KCL as first author—report that underdevelopment of a region of the cerebellum called the vermis is also associated with CHARGE syndrome (Yu et al., 2013).
Most cases of CHARGE syndrome can be related to a mutation in the gene that encodes CHD7, a protein that is involved in remodelling chromatin (Janssen et al., 2012). The latest work by Yu et al. shows that loss of CHD7 also disrupts the development of the early neural tube, which is the forerunner of the central nervous system. This results in underdevelopment (hypoplasia) of the cerebellar vermis. This finding is extremely exciting as it represents the very first example of this particular class of neural birth defect to be observed in humans.
One of the first steps in the development of the central nervous system is the establishment of gene expression domains that segment the neural tube into the regions that become the forebrain, the midbrain, the hindbrain and the spinal cord. Subsequently, signalling centres establish the boundaries between these regions and secrete growth factors which pattern the adjacent nervous tissue (Kiecker and Lumsden, 2012). The best understood signalling centre is the Isthmic Organizer, which forms at the boundary of the midbrain and the hindbrain. This centre secretes fibroblast growth factor 8 (Fgf8) and other growth factors, and is essential for defining the regions of the neural plate that will become the posterior midbrain and the cerebellum (Figure 1).
Extensive experiments in model vertebrates (such as mice, chickens and zebrafish) have shown that if the Isthmic Organizer fails to develop, there is dramatic and rapid cell death in adjacent regions of the neural tube. Mutant mice in which the Isthmic Organizer cannot express Fgf8 at all do not survive post-natally (Chi et al., 2003). However, reduced Fgf8 signalling or a failure to maintain Fgf8 expression does not result in animal death, but rather causes cerebellar vermis hypoplasia (Basson et al., 2008; Sato and Joyner, 2009). The genetic regulatory network that leads to the formation of the Isthmic Organizer is highly conserved across vertebrates, and beyond (Robertshaw and Kiecker, 2012), and it has long been postulated that disruption of the Isthmic Organizer must, therefore, be a cause of human cerebellar malformation. However, until now, this classical developmental phenotype had not been recognized in human patients.
With recent developments in neuroimaging, neuropathology and neurogenetics, many developmental disorders of the cerebellum, including cerebellar vermis hypoplasia, have emerged as causes of neurodevelopmental dysfunction (Doherty et al., 2013). Together, these disorders are relatively common, occurring roughly once in every 3000 live births. Cerebellar malformations can occur in isolation or as part of a broader malformation syndrome involving multiple systems. Although several cerebellar malformation genes have been identified, no gene directly involved in the formation or function of the Isthmic Organizer had previously been implicated in this class of birth defect, suggesting that Isthmic Organizer disorders might not be compatible with survival in humans.
Previously several clinical reports had noted cerebellar deficits in a few CHARGE syndrome patients. Now Yu, Basson and co-workers—who are based in London, Groningen and New York—report the results of MRI scans of a large cohort of 20 patients with CHARGE syndrome (caused by a mutation in CHD7; Yu et al., 2013). They confirm multiple cerebellar abnormalities in 55% of these patients, with 25% of the patients having cerebellar vermis hypoplasia.
Yu et al. also report the results of experiments of mice lacking one or both working copies of the Chd7 gene. Mice lacking one working copy of the gene did not have any obvious cerebellar phenotype, but cerebellar vermis hypoplasia was evident when one copy of the Fgf8 gene was also removed, suggesting genetic synergy between Chd7 and Fgf8. Expression of Fgf8 and its downstream gene Etv5 were significantly down regulated at the junction of the midbrain and the hindbrain during the early development of Chd7 mutant mice. Thus, reduced Fgf8 expression represents an underlying cause of CHARGE-related vermis hypoplasia because cerebellar development is exquisitely sensitive to the level of Fgf8 signalling.
Going one step further, Yu et al. next demonstrated that the expression of two genes that regulate Fgf8 expression at the Isthmic Organizer (Otx2 and Gbx2) is altered in mice lacking both working copies of the Chd7 gene. Chromatin immunoprecipitation assays subsequently revealed that Chd7 is associated with enhancer elements belonging to the Otx2 and Gbx2 genes, which suggests that Chd7 has a direct role in regulating these essential Isthmic Organizer genes.
Together these results provide substantial evidence that cerebellar vermis hypoplasia in CHARGE syndrome is caused by dysfunction of the Isthmic Organizer in the early embryo. Further, the work of Basson, Yu and co-workers suggests that Isthmic Organizer disruption may be a more common cause of human cerebellar malformation than previously thought. Although complete loss-of-function mutations in genes that are central to the formation of the Isthmic Organizer (such as Otx2, Gbx2 and Fgf8) are still likely to be incompatible with human life, this study implies that genes which regulate the expression of central Isthmic Organizer genes may cause cerebellar malformation when mutated.
CHD7 is expressed in a wide variety of tissues during development, and CHARGE syndrome phenotypes indicate that it has tissue-specific and developmental stage-specific roles. A difficult question remains as to how CHD7 achieves different functions in different tissues. For example although loss of Chd7 disrupts Isthmic Organizer Fgf8 expression, Fgf8 expression is normal in the adjacent pharyngeal arches of the embryo. One possibility is that Cdh7 has different binding partners in different tissues.
Intriguingly, it has recently been shown that Cdh7 interacts with a small number of other transcription factors in neural stem cells, and that mutations in these other factors underlie a number of human malformation disorders (Engelen et al., 2011). One exciting prediction of this finding in combination with the work of Yu et al. on CHD7, is that systematic analysis of cerebellar morphology may uncover previously unrecognized cerebellar deficits related to Isthmic Organizer function in a wide range of other human birth defect syndromes.
References
-
Mutation update on the CHD7 gene involved in CHARGE syndromeHuman Mutation 33:1149–1160.https://doi.org/10.1002/humu.22086
-
The role of organizers in patterning the nervous systemAnnual Reviews of Neuroscience 35:347–367.https://doi.org/10.1146/annurev-neuro-062111-150543
-
Phylogenetic origins of brain organisersScientifica 2012:475017.https://doi.org/10.6064/2012/475017
Article and author information
Author details
Publication history
Copyright
© 2013, Haldipur and Millen
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Genetics and Genomics
The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1 and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4 or venous-enriched NR2F2. This cohort of well characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signalling pathways with arterial gene expression.
-
- Developmental Biology
- Genetics and Genomics
Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.