The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria

Abstract

C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3-C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect.

Article and author information

Author details

  1. Julia Mallmann

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. David Heckmann

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrea Bräutigam

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Martin J Lercher

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Andreas PM Weber

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Westhoff

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Udo Gowik

    Heinrich-Heine-Universität, Düsseldorf, Germany
    For correspondence
    gowik@uni-duesseldorf.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Mallmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,353
    views
  • 779
    downloads
  • 172
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia Mallmann
  2. David Heckmann
  3. Andrea Bräutigam
  4. Martin J Lercher
  5. Andreas PM Weber
  6. Peter Westhoff
  7. Udo Gowik
(2014)
The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria
eLife 3:e02478.
https://doi.org/10.7554/eLife.02478

Share this article

https://doi.org/10.7554/eLife.02478

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Gülnihal Kavaklioglu, Alexandra Podhornik ... Christian Seiser
    Research Article

    Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Torsten Günther, Jacob Chisausky ... Cristina Valdiosera
    Research Article

    Cattle (Bos taurus) play an important role in the life of humans in the Iberian Peninsula not just as a food source but also in cultural events. When domestic cattle were first introduced to Iberia, wild aurochs (Bos primigenius) were still present, leaving ample opportunity for mating (whether intended by farmers or not). Using a temporal bioarchaeological dataset covering eight millennia, we trace gene flow between the two groups. Our results show frequent hybridisation during the Neolithic and Chalcolithic, likely reflecting a mix of hunting and herding or relatively unmanaged herds, with mostly male aurochs and female domestic cattle involved. This is supported by isotopic evidence consistent with ecological niche sharing, with only a few domestic cattle possibly being managed. The proportion of aurochs ancestry in domestic cattle remains relatively constant from about 4000 years ago, probably due to herd management and selection against first generation hybrids, coinciding with other cultural transitions. The constant level of wild ancestry (~20%) continues into modern Western European breeds including Iberian cattle selected for aggressiveness and fighting ability. This study illuminates the genomic impact of human actions and wild introgression in the establishment of cattle as one of the most important domestic species today.