The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria

Abstract

C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3-C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect.

Article and author information

Author details

  1. Julia Mallmann

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. David Heckmann

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrea Bräutigam

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Martin J Lercher

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Andreas PM Weber

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Peter Westhoff

    Heinrich-Heine-Universität, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Udo Gowik

    Heinrich-Heine-Universität, Düsseldorf, Germany
    For correspondence
    gowik@uni-duesseldorf.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Mallmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,336
    views
  • 762
    downloads
  • 169
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julia Mallmann
  2. David Heckmann
  3. Andrea Bräutigam
  4. Martin J Lercher
  5. Andreas PM Weber
  6. Peter Westhoff
  7. Udo Gowik
(2014)
The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria
eLife 3:e02478.
https://doi.org/10.7554/eLife.02478

Share this article

https://doi.org/10.7554/eLife.02478

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Giulia Ferraretti, Paolo Abondio ... Marco Sazzini
    Research Article

    It is well established that several Homo sapiens populations experienced admixture with extinct human species during their evolutionary history. Sometimes, such a gene flow could have played a role in modulating their capability to cope with a variety of selective pressures, thus resulting in archaic adaptive introgression events. A paradigmatic example of this evolutionary mechanism is offered by the EPAS1 gene, whose most frequent haplotype in Himalayan highlanders was proved to reduce their susceptibility to chronic mountain sickness and to be introduced in the gene pool of their ancestors by admixture with Denisovans. In this study, we aimed at further expanding the investigation of the impact of archaic introgression on more complex adaptive responses to hypobaric hypoxia evolved by populations of Tibetan/Sherpa ancestry, which have been plausibly mediated by soft selective sweeps and/or polygenic adaptations rather than by hard selective sweeps. For this purpose, we used a combination of composite-likelihood and gene network-based methods to detect adaptive loci in introgressed chromosomal segments from Tibetan WGS data and to shortlist those presenting Denisovan-like derived alleles that participate to the same functional pathways and are absent in populations of African ancestry, which are supposed to do not have experienced Denisovan admixture. According to this approach, we identified multiple genes putatively involved in archaic introgression events and that, especially as regards TBC1D1, RASGRF2, PRKAG2, and KRAS, have plausibly contributed to shape the adaptive modulation of angiogenesis and of certain cardiovascular traits in high-altitude Himalayan peoples. These findings provided unprecedented evidence about the complexity of the adaptive phenotype evolved by these human groups to cope with challenges imposed by hypobaric hypoxia, offering new insights into the tangled interplay of genetic determinants that mediates the physiological adjustments crucial for human adaptation to the high-altitude environment.