Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code

  1. Tammy Bullwinkle
  2. Noah M Reynolds
  3. Medha Raina
  4. Adil B Moghal
  5. Eleftheria Matsa
  6. Andrei Rajkovic
  7. Huseyin Kayadibi
  8. Farbod Fazlollahi
  9. Christopher Ryan
  10. Nathaniel Howitz
  11. Kym F Faull
  12. Beth Lazazzera
  13. Michael Ibba  Is a corresponding author
  1. Ohio State University, United States
  2. Adana Military Hospital, Turkey
  3. Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
  4. California Department of Toxic Substances Control, United States
  5. University of California, Los Angeles, United States

Abstract

Aminoacyl-tRNA synthetases use a variety of mechanisms to ensure fidelity of the genetic code and ultimately select the correct amino acids to be used in protein synthesis. The physiological necessity of these quality control mechanisms in different environments remains unclear, as the cost versus benefit of accurate protein synthesis is difficult to predict. We show that in Escherichia coli, a non-coded amino acid produced through oxidative damage is a significant threat to the accuracy of protein synthesis and must be cleared by phenylalanine-tRNA synthetase in order to prevent cellular toxicity caused by mis-synthesized proteins. These findings demonstrate how stress can lead to the accumulation of non-canonical amino acids that must be excluded from the proteome in order to maintain cellular viability.

Article and author information

Author details

  1. Tammy Bullwinkle

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Noah M Reynolds

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Medha Raina

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adil B Moghal

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eleftheria Matsa

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrei Rajkovic

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Huseyin Kayadibi

    Adana Military Hospital, Adana, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  8. Farbod Fazlollahi

    Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Christopher Ryan

    California Department of Toxic Substances Control, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nathaniel Howitz

    University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kym F Faull

    Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Beth Lazazzera

    University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Michael Ibba

    Ohio State University, Columbus, United States
    For correspondence
    ibba.1@att.net
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Bullwinkle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,813
    views
  • 293
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tammy Bullwinkle
  2. Noah M Reynolds
  3. Medha Raina
  4. Adil B Moghal
  5. Eleftheria Matsa
  6. Andrei Rajkovic
  7. Huseyin Kayadibi
  8. Farbod Fazlollahi
  9. Christopher Ryan
  10. Nathaniel Howitz
  11. Kym F Faull
  12. Beth Lazazzera
  13. Michael Ibba
(2014)
Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code
eLife 3:e02501.
https://doi.org/10.7554/eLife.02501

Share this article

https://doi.org/10.7554/eLife.02501

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.