Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code

  1. Tammy Bullwinkle
  2. Noah M Reynolds
  3. Medha Raina
  4. Adil B Moghal
  5. Eleftheria Matsa
  6. Andrei Rajkovic
  7. Huseyin Kayadibi
  8. Farbod Fazlollahi
  9. Christopher Ryan
  10. Nathaniel Howitz
  11. Kym F Faull
  12. Beth Lazazzera
  13. Michael Ibba  Is a corresponding author
  1. Ohio State University, United States
  2. Adana Military Hospital, Turkey
  3. Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
  4. California Department of Toxic Substances Control, United States
  5. University of California, Los Angeles, United States

Abstract

Aminoacyl-tRNA synthetases use a variety of mechanisms to ensure fidelity of the genetic code and ultimately select the correct amino acids to be used in protein synthesis. The physiological necessity of these quality control mechanisms in different environments remains unclear, as the cost versus benefit of accurate protein synthesis is difficult to predict. We show that in Escherichia coli, a non-coded amino acid produced through oxidative damage is a significant threat to the accuracy of protein synthesis and must be cleared by phenylalanine-tRNA synthetase in order to prevent cellular toxicity caused by mis-synthesized proteins. These findings demonstrate how stress can lead to the accumulation of non-canonical amino acids that must be excluded from the proteome in order to maintain cellular viability.

Article and author information

Author details

  1. Tammy Bullwinkle

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Noah M Reynolds

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Medha Raina

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adil B Moghal

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eleftheria Matsa

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrei Rajkovic

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Huseyin Kayadibi

    Adana Military Hospital, Adana, Turkey
    Competing interests
    The authors declare that no competing interests exist.
  8. Farbod Fazlollahi

    Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Christopher Ryan

    California Department of Toxic Substances Control, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nathaniel Howitz

    University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kym F Faull

    Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Beth Lazazzera

    University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Michael Ibba

    Ohio State University, Columbus, United States
    For correspondence
    ibba.1@att.net
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Version history

  1. Received: February 10, 2014
  2. Accepted: May 29, 2014
  3. Accepted Manuscript published: June 2, 2014 (version 1)
  4. Version of Record published: June 24, 2014 (version 2)

Copyright

© 2014, Bullwinkle et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,800
    views
  • 290
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tammy Bullwinkle
  2. Noah M Reynolds
  3. Medha Raina
  4. Adil B Moghal
  5. Eleftheria Matsa
  6. Andrei Rajkovic
  7. Huseyin Kayadibi
  8. Farbod Fazlollahi
  9. Christopher Ryan
  10. Nathaniel Howitz
  11. Kym F Faull
  12. Beth Lazazzera
  13. Michael Ibba
(2014)
Oxidation of cellular amino acid pools leads to cytotoxic mistranslation of the genetic code
eLife 3:e02501.
https://doi.org/10.7554/eLife.02501

Share this article

https://doi.org/10.7554/eLife.02501

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.