Abstract

Due to the uniform cyto-architecture of the cerebellar cortex, its overall physiological characteristics have traditionally been considered to be homogeneous. Here we show in awake mice at rest that spiking activity of Purkinje cells, the sole output cells of the cerebellar cortex, differs between cerebellar modules and correlates with their expression of the glycolytic enzyme aldolase C or zebrin. Simple spike and complex spike frequencies were significantly higher in Purkinje cells located in zebrin-negative than zebrin-positive modules. The difference in simple spike frequency persisted when the synaptic input to, but not intrinsic activity of, Purkinje cells was manipulated. Blocking TRPC3, the effector channel of a cascade of proteins that have zebrin-like distribution patterns, attenuated the simple spike frequency difference. Our results indicate that zebrin-discriminated cerebellar modules operate at different frequencies, which depends on activation of TRPC3, and that this property is relevant for all cerebellar functions.

Article and author information

Author details

  1. Haibo Zhou

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhanmin Lin

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Kai Voges

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Chiheng Ju

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhenyu Gao

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Laurens WJ Bosman

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Tom JH Ruigrok

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Freek E Hoebeek

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Chris I De Zeeuw

    Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Martijn Schonewille

    Erasmus MC, Rotterdam, Netherlands
    For correspondence
    m.schonewille@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Dora E Angelaki, Baylor College of Medicine, United States

Ethics

Animal experimentation: The experiments performed in this study were approved by the local animal ethical committee ("Dier Experimenten Commissie", DEC).

Version history

  1. Received: February 13, 2014
  2. Accepted: May 3, 2014
  3. Accepted Manuscript published: May 7, 2014 (version 1)
  4. Version of Record published: June 10, 2014 (version 2)

Copyright

© 2014, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,003
    Page views
  • 840
    Downloads
  • 218
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haibo Zhou
  2. Zhanmin Lin
  3. Kai Voges
  4. Chiheng Ju
  5. Zhenyu Gao
  6. Laurens WJ Bosman
  7. Tom JH Ruigrok
  8. Freek E Hoebeek
  9. Chris I De Zeeuw
  10. Martijn Schonewille
(2014)
Cerebellar modules operate at different frequencies
eLife 3:e02536.
https://doi.org/10.7554/eLife.02536

Share this article

https://doi.org/10.7554/eLife.02536

Further reading

    1. Neuroscience
    Catarina Albergaria, Megan R Carey
    Insight

    Although the wiring of the cerebellar cortex appears to be uniform, the neurons in this region of the brain behave more differently from each other than previously thought.

    1. Cell Biology
    2. Neuroscience
    Zhenyong Wu, Grant F Kusick ... Shigeki Watanabe
    Research Article

    Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.