Abstract

Due to the uniform cyto-architecture of the cerebellar cortex, its overall physiological characteristics have traditionally been considered to be homogeneous. Here we show in awake mice at rest that spiking activity of Purkinje cells, the sole output cells of the cerebellar cortex, differs between cerebellar modules and correlates with their expression of the glycolytic enzyme aldolase C or zebrin. Simple spike and complex spike frequencies were significantly higher in Purkinje cells located in zebrin-negative than zebrin-positive modules. The difference in simple spike frequency persisted when the synaptic input to, but not intrinsic activity of, Purkinje cells was manipulated. Blocking TRPC3, the effector channel of a cascade of proteins that have zebrin-like distribution patterns, attenuated the simple spike frequency difference. Our results indicate that zebrin-discriminated cerebellar modules operate at different frequencies, which depends on activation of TRPC3, and that this property is relevant for all cerebellar functions.

Article and author information

Author details

  1. Haibo Zhou

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhanmin Lin

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Kai Voges

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Chiheng Ju

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhenyu Gao

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Laurens WJ Bosman

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Tom JH Ruigrok

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Freek E Hoebeek

    Erasmus MC, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Chris I De Zeeuw

    Netherlands Institute for Neuroscience, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Martijn Schonewille

    Erasmus MC, Rotterdam, Netherlands
    For correspondence
    m.schonewille@erasmusmc.nl
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Dora E Angelaki, Baylor College of Medicine, United States

Ethics

Animal experimentation: The experiments performed in this study were approved by the local animal ethical committee ("Dier Experimenten Commissie", DEC).

Version history

  1. Received: February 13, 2014
  2. Accepted: May 3, 2014
  3. Accepted Manuscript published: May 7, 2014 (version 1)
  4. Version of Record published: June 10, 2014 (version 2)

Copyright

© 2014, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,016
    views
  • 851
    downloads
  • 250
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haibo Zhou
  2. Zhanmin Lin
  3. Kai Voges
  4. Chiheng Ju
  5. Zhenyu Gao
  6. Laurens WJ Bosman
  7. Tom JH Ruigrok
  8. Freek E Hoebeek
  9. Chris I De Zeeuw
  10. Martijn Schonewille
(2014)
Cerebellar modules operate at different frequencies
eLife 3:e02536.
https://doi.org/10.7554/eLife.02536

Share this article

https://doi.org/10.7554/eLife.02536

Further reading

    1. Neuroscience
    Catarina Albergaria, Megan R Carey
    Insight

    Although the wiring of the cerebellar cortex appears to be uniform, the neurons in this region of the brain behave more differently from each other than previously thought.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.