Cyclin D activates the Rb tumor suppressor by mono-phosphorylation

  1. Anil M Narasimha
  2. Manuel Kaulich
  3. Gary S Shapiro
  4. Yoon J Choi
  5. Piotr Sicinski
  6. Steven F Dowdy  Is a corresponding author
  1. University of California, San Diego School of Medicine, United States
  2. Sanofi Oncology, United States
  3. Harvard Medical School, United States

Abstract

The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. Here we find that Rb is exclusively mono-phosphorylated in early G1 phase by cyclin D:Cdk4/6. Mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono-phosphorylated Rb, generated by cyclin D:Cdk4/6, is the only Rb isoform in early G1 phase.

Article and author information

Author details

  1. Anil M Narasimha

    University of California, San Diego School of Medicine, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Manuel Kaulich

    University of California, San Diego School of Medicine, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gary S Shapiro

    Sanofi Oncology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yoon J Choi

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Piotr Sicinski

    Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Steven F Dowdy

    University of California, San Diego School of Medicine, La Jolla, United States
    For correspondence
    sdowdy@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Narasimha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 15,156
    views
  • 2,268
    downloads
  • 343
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anil M Narasimha
  2. Manuel Kaulich
  3. Gary S Shapiro
  4. Yoon J Choi
  5. Piotr Sicinski
  6. Steven F Dowdy
(2014)
Cyclin D activates the Rb tumor suppressor by mono-phosphorylation
eLife 3:e02872.
https://doi.org/10.7554/eLife.02872

Share this article

https://doi.org/10.7554/eLife.02872

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.