Optimal multisensory decision-making in a reaction-time task

  1. Jan Drugowitsch  Is a corresponding author
  2. Gregory C DeAngelis
  3. Eliana M Klier
  4. Dora E Angelaki
  5. Alexandre Pouget
  1. University of Rochester, United States
  2. Baylor College of Medicine, United States

Abstract

Humans and animals can integrate sensory evidence from various sources to make decisions in a statistically near-optimal manner, provided that the stimulus presentation time is fixed across trials. Little is known about whether optimality is preserved when subjects can choose when to make a decision (reaction-time task), nor when sensory inputs have time-varying reliability. Using a reaction-time version of a visual/vestibular heading discrimination task, we show that behavior is clearly sub-optimal when quantified with traditional optimality metrics that ignore reaction times. We created a computational model that accumulates evidence optimally across both cues and time, and trades off accuracy with decision speed. This model quantitatively explains subjects' choices and reaction times, supporting the hypothesis that subjects do, in fact, accumulate evidence optimally over time and across sensory modalities, even when the reaction time is under the subject's control.

Article and author information

Author details

  1. Jan Drugowitsch

    University of Rochester, New York, United States
    For correspondence
    jdrugo@gmail.com
    Competing interests
    No competing interests declared.
  2. Gregory C DeAngelis

    University of Rochester, New York, United States
    Competing interests
    No competing interests declared.
  3. Eliana M Klier

    Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  4. Dora E Angelaki

    Baylor College of Medicine, Houston, United States
    Competing interests
    Dora E Angelaki, Reviewing editor, eLife.
  5. Alexandre Pouget

    University of Rochester, New York, United States
    Competing interests
    No competing interests declared.

Ethics

Human subjects: Informed consent was obtained from all participants and all procedures were reviewed and approved by the Washington University Office of Human Research Protections (OHRP), Institutional Review Board (IRB; IRB ID# 201109183). Consent to publish was not obtained in writing, as it was not required by the IRB, but all subjects were recruited for this purpose and approved verbally. Of the initial seven subjects, three participated in a follow-up experiment roughly two years after the initial data collection. Procedures for the follow-up experiment were approved by the Institutional Review Board for Human Subject Research for Baylor College of Medicine and Affiliated Hospitals (BCM IRB, ID# H-29411) and informed consent and consent to publish was given again by all three subjects.

Copyright

© 2014, Drugowitsch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,530
    views
  • 889
    downloads
  • 101
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Drugowitsch
  2. Gregory C DeAngelis
  3. Eliana M Klier
  4. Dora E Angelaki
  5. Alexandre Pouget
(2014)
Optimal multisensory decision-making in a reaction-time task
eLife 3:e03005.
https://doi.org/10.7554/eLife.03005

Share this article

https://doi.org/10.7554/eLife.03005

Further reading

    1. Neuroscience
    David Hike, Xiaochen Liu ... Xin Yu
    Research Article

    High-resolution awake mouse functional magnetic resonance imaging (fMRI) remains challenging despite extensive efforts to address motion-induced artifacts and stress. This study introduces an implantable radio frequency (RF) surface coil design that minimizes image distortion caused by the air/tissue interface of mouse brains while simultaneously serving as a headpost for fixation during scanning. Furthermore, this study provides a thorough acclimation method used to accustom animals to the MRI environment minimizing motion-induced artifacts. Using a 14 T scanner, high-resolution fMRI enabled brain-wide functional mapping of visual and vibrissa stimulation at 100 µm×100 µm×200 µm resolution with a 2 s per frame sampling rate. Besides activated ascending visual and vibrissa pathways, robust blood oxygen level-dependent (BOLD) responses were detected in the anterior cingulate cortex upon visual stimulation and spread through the ventral retrosplenial area (VRA) with vibrissa air-puff stimulation, demonstrating higher-order sensory processing in association cortices of awake mice. In particular, the rapid hemodynamic responses in VRA upon vibrissa stimulation showed a strong correlation with the hippocampus, thalamus, and prefrontal cortical areas. Cross-correlation analysis with designated VRA responses revealed early positive BOLD signals at the contralateral barrel cortex (BC) occurring 2 s prior to the air-puff in awake mice with repetitive stimulation, which was not detected using a randomized stimulation paradigm. This early BC activation indicated a learned anticipation through the vibrissa system and association cortices in awake mice under continuous exposure of repetitive air-puff stimulation. This work establishes a high-resolution awake mouse fMRI platform, enabling brain-wide functional mapping of sensory signal processing in higher association cortical areas.

    1. Neuroscience
    Yevgenia Rosenblum, Mahdad Jafarzadeh Esfahani ... Martin Dresler
    Research Article

    Sleep cycles are defined as episodes of non-rapid eye movement (non-REM) sleep followed by an episode of REM sleep. Fractal or aperiodic neural activity is a well-established marker of arousal and sleep stages measured using electroencephalography. We introduce a new concept of ‘fractal cycles’ of sleep, defined as a time interval during which time series of fractal activity descend to their local minimum and ascend to the next local maximum. We assess correlations between fractal and classical (i.e. non-REM – REM) sleep cycle durations and study cycles with skipped REM sleep. The sample comprised 205 healthy adults, 21 children and adolescents and 111 patients with depression. We found that fractal and classical cycle durations (89±34 vs 90±25 min) correlated positively (r=0.5, p<0.001). Children and adolescents had shorter fractal cycles than young adults (76±34 vs 94±32 min). The fractal cycle algorithm detected cycles with skipped REM sleep in 91–98% of cases. Medicated patients with depression showed longer fractal cycles compared to their unmedicated state (107±51 vs 92±38 min) and age-matched controls (104±49 vs 88±31 min). In conclusion, fractal cycles are an objective, quantifiable, continuous and biologically plausible way to display sleep neural activity and its cycles.