Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting

  1. Daniela Pignatta
  2. Robert M Erdmann
  3. Elias Scheer
  4. Colette L Picard
  5. George W Bell
  6. Mary Gehring  Is a corresponding author
  1. Whitehead Institute for Biomedical Research, United States

Abstract

Imprinted gene expression occurs during seed development in plants and is associated with differential DNA methylation of parental alleles, particularly at proximal transposable elements (TEs). Imprinting variability could contribute to observed parent-of-origin effects on seed development. We investigated intraspecific variation in imprinting, coupled with analysis of DNA methylation and small RNAs, among three Arabidopsis strains with diverse seed phenotypes. The majority of imprinted genes were parentally biased in the same manner among all strains. However, we identified several examples of allele-specific imprinting correlated with intraspecific epigenetic variation at a TE. We successfully predicted imprinting in additional strains based on methylation variability. We conclude that there is standing variation in imprinting even in recently diverged genotypes due to intraspecific epiallelic variation. Our data demonstrate that epiallelic variation and genomic imprinting intersect to produce novel gene expression patterns in seeds.

Article and author information

Author details

  1. Daniela Pignatta

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Robert M Erdmann

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elias Scheer

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Colette L Picard

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. George W Bell

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mary Gehring

    Whitehead Institute for Biomedical Research, Cambridge, United States
    For correspondence
    mgehring@wi.mit.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Pignatta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,071
    views
  • 914
    downloads
  • 168
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniela Pignatta
  2. Robert M Erdmann
  3. Elias Scheer
  4. Colette L Picard
  5. George W Bell
  6. Mary Gehring
(2014)
Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting
eLife 3:e03198.
https://doi.org/10.7554/eLife.03198

Share this article

https://doi.org/10.7554/eLife.03198

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.