mRNA-programmed translation pauses in the targeting of E. coli membrane proteins

  1. Nir Fluman
  2. Sivan Navon
  3. Eitan Bibi
  4. Yitzhak Pilpel  Is a corresponding author
  1. Weizmann Institute of Science, Israel

Abstract

In all living organisms, ribosomes translating membrane proteins are targeted to membrane translocons early in translation, by the ubiquitous Signal Recognition Particle (SRP) system. In eukaryotes, the SRP Alu domain arrests translation elongation of membrane proteins until targeting is complete. Curiously however, the Alu domain is lacking in most eubacteria. Here, by analyzing genome-wide data on translation rates, we identified a potential compensatory mechanism in E. coli that serves to slow down translation during membrane protein targeting. The underlying mechanism is likely programmed into the coding sequence, where Shine-Dalgarno-like elements trigger elongation pauses at strategic positions during early stages of translation. We provide experimental evidence that slow translation during targeting improves membrane protein production fidelity, as it correlates with better folding of overexpressed membrane proteins. Thus, slow elongation is important for membrane protein targeting in E. coli, which utilizes mechanisms different from the eukaryotic one to control translation speed.

Article and author information

Author details

  1. Nir Fluman

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Sivan Navon

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Eitan Bibi

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Yitzhak Pilpel

    Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    Pilpel@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Fluman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,620
    views
  • 454
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.03440

Further reading

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.

    1. Cell Biology
    2. Developmental Biology
    Sarah Y Coomson, Salil A Lachke
    Insight

    A study in mice reveals key interactions between proteins involved in fibroblast growth factor signaling and how they contribute to distinct stages of eye lens development.