mRNA-programmed translation pauses in the targeting of E. coli membrane proteins

  1. Nir Fluman
  2. Sivan Navon
  3. Eitan Bibi
  4. Yitzhak Pilpel  Is a corresponding author
  1. Weizmann Institute of Science, Israel

Abstract

In all living organisms, ribosomes translating membrane proteins are targeted to membrane translocons early in translation, by the ubiquitous Signal Recognition Particle (SRP) system. In eukaryotes, the SRP Alu domain arrests translation elongation of membrane proteins until targeting is complete. Curiously however, the Alu domain is lacking in most eubacteria. Here, by analyzing genome-wide data on translation rates, we identified a potential compensatory mechanism in E. coli that serves to slow down translation during membrane protein targeting. The underlying mechanism is likely programmed into the coding sequence, where Shine-Dalgarno-like elements trigger elongation pauses at strategic positions during early stages of translation. We provide experimental evidence that slow translation during targeting improves membrane protein production fidelity, as it correlates with better folding of overexpressed membrane proteins. Thus, slow elongation is important for membrane protein targeting in E. coli, which utilizes mechanisms different from the eukaryotic one to control translation speed.

Article and author information

Author details

  1. Nir Fluman

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Sivan Navon

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Eitan Bibi

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Yitzhak Pilpel

    Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    Pilpel@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: May 21, 2014
  2. Accepted: August 16, 2014
  3. Accepted Manuscript published: August 18, 2014 (version 1)
  4. Version of Record published: September 23, 2014 (version 2)

Copyright

© 2014, Fluman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,571
    Page views
  • 434
    Downloads
  • 59
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nir Fluman
  2. Sivan Navon
  3. Eitan Bibi
  4. Yitzhak Pilpel
(2014)
mRNA-programmed translation pauses in the targeting of E. coli membrane proteins
eLife 3:e03440.
https://doi.org/10.7554/eLife.03440

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Juan Xiang, Chaoyang Fan ... Pei Xu
    Research Article Updated

    The relative positions of viral DNA genomes to the host intranuclear environment play critical roles in determining virus fate. Recent advances in the application of chromosome conformation capture-based sequencing analysis (3 C technologies) have revealed valuable aspects of the spatiotemporal interplay of viral genomes with host chromosomes. However, to elucidate the causal relationship between the subnuclear localization of viral genomes and the pathogenic outcome of an infection, manipulative tools are needed. Rapid repositioning of viral DNAs to specific subnuclear compartments amid infection is a powerful approach to synchronize and interrogate this dynamically changing process in space and time. Herein, we report an inducible CRISPR-based two-component platform that relocates extrachromosomal DNA pieces (5 kb to 170 kb) to the nuclear periphery in minutes (CRISPR-nuPin). Based on this strategy, investigations of herpes simplex virus 1 (HSV-1), a prototypical member of the human herpesvirus family, revealed unprecedently reported insights into the early intranuclear life of the pathogen: (I) Viral genomes tethered to the nuclear periphery upon entry, compared with those freely infecting the nucleus, were wrapped around histones with increased suppressive modifications and subjected to stronger transcriptional silencing and prominent growth inhibition. (II) Relocating HSV-1 genomes at 1 hr post infection significantly promoted the transcription of viral genes, termed an ‘Escaping’ effect. (III) Early accumulation of ICP0 was a sufficient but not necessary condition for ‘Escaping’. (IV) Subnuclear localization was only critical during early infection. Importantly, the CRISPR-nuPin tactic, in principle, is applicable to many other DNA viruses.

    1. Cell Biology
    Enrico Radaelli, Charles-Antoine Assenmacher ... Marco Spinazzi
    Research Article Updated

    Impaired spermatogenesis and male infertility are common manifestations associated with mitochondrial diseases, yet the underlying mechanisms linking these conditions remain elusive. In this study, we demonstrate that mice deficient for the mitochondrial intra-membrane rhomboid protease PARL, a recently reported model of the mitochondrial encephalopathy Leigh syndrome, develop early testicular atrophy caused by a complete arrest of spermatogenesis during meiotic prophase I, followed by degeneration and death of arrested spermatocytes. This process is independent of neurodegeneration. Interestingly, genetic modifications of PINK1, PGAM5, and TTC19 – three major substrates of PARL with important roles in mitochondrial homeostasis – fail to reproduce or modify this severe phenotype, indicating that the spermatogenic arrest arises from distinct molecular pathways. We further observed severe abnormalities in mitochondrial ultrastructure in PARL-deficient spermatocytes, along with prominent electron transfer chain defects, disrupted coenzyme Q (CoQ) biosynthesis, and metabolic rewiring. These mitochondrial defects are associated with a germ cell-specific decrease in GPX4 expression leading arrested spermatocytes to ferroptosis – a regulated cell death modality characterized by uncontrolled lipid peroxidation. Our results suggest that mitochondrial defects induced by PARL depletion act as an initiating trigger for ferroptosis in primary spermatocytes through simultaneous effects on GPX4 and CoQ – two major inhibitors of ferroptosis. These findings shed new light on the potential role of ferroptosis in the pathogenesis of mitochondrial diseases and male infertility warranting further investigation.