Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes

  1. Aaron F Severson
  2. Barbara J Meyer  Is a corresponding author
  1. Cleveland State University, United States
  2. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

We show that multiple, functionally specialized cohesin complexes mediate the establishment and two-step release of sister chromatid cohesion that underlies the production of haploid gametes. In C. elegans, the meiotic kleisin subunits REC-8 and COH-3/4 endow cohesins with distinctive properties, specifying how cohesins load onto chromosomes and then trigger and release cohesion. Unlike REC-8 cohesin, COH-3/4 cohesin becomes cohesive through a replication-independent mechanism initiated by the DNA double-stranded breaks that induce crossover recombination. Thus, break-induced cohesion also tethers replicated meiotic chromosomes. Later, recombination stimulates separase-independent removal of REC-8 and COH-3/4 cohesins from reciprocal chromosomal territories flanking the crossover site. This region-specific removal likely underlies the two-step separation of homologs and sisters. Unexpectedly, COH-3/4 performs cohesion-independent functions in synaptonemal complex assembly. This new model for cohesin function in reducing genome copy number diverges from that established in yeast but likely applies directly to plants and mammals, which utilize similar meiotic kleisins.

Article and author information

Author details

  1. Aaron F Severson

    Cleveland State University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Barbara J Meyer

    Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    bjmeyer@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Bernard de Massy, Institute of Human Genetics, CNRS UPR 1142, France

Version history

  1. Received: May 23, 2014
  2. Accepted: August 28, 2014
  3. Accepted Manuscript published: August 29, 2014 (version 1)
  4. Version of Record published: September 25, 2014 (version 2)

Copyright

© 2014, Severson & Meyer

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,332
    Page views
  • 442
    Downloads
  • 54
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aaron F Severson
  2. Barbara J Meyer
(2014)
Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes
eLife 3:e03467.
https://doi.org/10.7554/eLife.03467

Share this article

https://doi.org/10.7554/eLife.03467

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.