Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes

  1. Aaron F Severson
  2. Barbara J Meyer  Is a corresponding author
  1. Cleveland State University, United States
  2. Howard Hughes Medical Institute, University of California, Berkeley, United States

Abstract

We show that multiple, functionally specialized cohesin complexes mediate the establishment and two-step release of sister chromatid cohesion that underlies the production of haploid gametes. In C. elegans, the meiotic kleisin subunits REC-8 and COH-3/4 endow cohesins with distinctive properties, specifying how cohesins load onto chromosomes and then trigger and release cohesion. Unlike REC-8 cohesin, COH-3/4 cohesin becomes cohesive through a replication-independent mechanism initiated by the DNA double-stranded breaks that induce crossover recombination. Thus, break-induced cohesion also tethers replicated meiotic chromosomes. Later, recombination stimulates separase-independent removal of REC-8 and COH-3/4 cohesins from reciprocal chromosomal territories flanking the crossover site. This region-specific removal likely underlies the two-step separation of homologs and sisters. Unexpectedly, COH-3/4 performs cohesion-independent functions in synaptonemal complex assembly. This new model for cohesin function in reducing genome copy number diverges from that established in yeast but likely applies directly to plants and mammals, which utilize similar meiotic kleisins.

Article and author information

Author details

  1. Aaron F Severson

    Cleveland State University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Barbara J Meyer

    Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    bjmeyer@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Bernard de Massy, Institute of Human Genetics, CNRS UPR 1142, France

Version history

  1. Received: May 23, 2014
  2. Accepted: August 28, 2014
  3. Accepted Manuscript published: August 29, 2014 (version 1)
  4. Version of Record published: September 25, 2014 (version 2)

Copyright

© 2014, Severson & Meyer

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,354
    views
  • 444
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aaron F Severson
  2. Barbara J Meyer
(2014)
Divergent kleisin subunits of cohesin specify mechanisms to tether and release meiotic chromosomes
eLife 3:e03467.
https://doi.org/10.7554/eLife.03467

Share this article

https://doi.org/10.7554/eLife.03467

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.