The Drosophila Sp8 transcription factor buttonhead prevents premature differentiation of intermediate neural progenitors

  1. Yonggang Xie
  2. Xiaosu Li
  3. Xian Zhang
  4. Shaolin Mei
  5. Hongyu Li
  6. Andreacarola Urso
  7. Sijun Zhu  Is a corresponding author
  1. State University of New York Upstate Medical University, United States
  2. Syracuse University, United States

Abstract

Intermediate neural progenitor cells (INPs) need to avoid differentiation and cell cycle exit while maintaining restricted developmental potential, but mechanisms preventing differentiation and cell cycle exit of INPs are not well understood. Here we report that the Drosophila homolog of mammalian Sp8 transcription factor Buttonhead (Btd) prevents premature differentiation and cell cycle exit of INPs in Drosophila larval type II neuroblast (NB) lineages. We show that loss of Btd leads to elimination of mature INPs due to premature differentiation of INPs into terminally dividing ganglion mother cells. We provide evidence to demonstrate that Btd prevents the premature differentiation by suppressing the expression of the homeodomain protein Prospero in immature INPs. We further show that Btd functions cooperatively with the Ets transcription factor Pointed P1 to promote the generation of INPs. Thus, our work reveals a critical mechanism that prevents premature differentiation and cell cycle exit ofDrosophila INPs.

Article and author information

Author details

  1. Yonggang Xie

    State University of New York Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiaosu Li

    State University of New York Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xian Zhang

    State University of New York Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shaolin Mei

    State University of New York Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hongyu Li

    State University of New York Upstate Medical University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andreacarola Urso

    Syracuse University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sijun Zhu

    State University of New York Upstate Medical University, Syracuse, United States
    For correspondence
    zhus@upstate.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Version history

  1. Received: June 7, 2014
  2. Accepted: September 28, 2014
  3. Accepted Manuscript published: October 6, 2014 (version 1)
  4. Version of Record published: November 6, 2014 (version 2)

Copyright

© 2014, Xie et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,899
    views
  • 223
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yonggang Xie
  2. Xiaosu Li
  3. Xian Zhang
  4. Shaolin Mei
  5. Hongyu Li
  6. Andreacarola Urso
  7. Sijun Zhu
(2014)
The Drosophila Sp8 transcription factor buttonhead prevents premature differentiation of intermediate neural progenitors
eLife 3:e03596.
https://doi.org/10.7554/eLife.03596

Share this article

https://doi.org/10.7554/eLife.03596

Further reading

    1. Stem Cells and Regenerative Medicine
    2. Developmental Biology
    Yanrui Jiang, Heinrich Reichert
    Insight

    In the developing fruit fly brain, a protein called Trithorax increases the number of neural cells produced from a single stem cell, in part by regulating the transcription of the target genes buttonhead and pointed.

    1. Developmental Biology
    Siyuan Cheng, Ivan Fan Xia ... Stefania Nicoli
    Research Article

    Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries and play a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular disease and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating dedifferentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that arterial specification of CoW endothelial cells (ECs) occurs after their migration from cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors after they were recruited to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity and wall shear stress. Furthermore, pulsatile flow induces differentiation of human brain PDGFRB+ mural cells into VSMCs, and blood flow is required for VSMC differentiation on zebrafish CoW arteries. Consistently, flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight blood flow activation of endothelial klf2a as a mechanism regulating initial VSMC differentiation on vertebrate brain arteries.