Abstract

In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.

Article and author information

Author details

  1. Tania Nguyen

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Harry Fischl

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Françoise S Howe

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Ronja Woloszczuk

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Ana Serra Barros

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Zhenyu Xu

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  7. David Brown

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  8. Struan C Murray

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Simon Haenni

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  10. James M Halstead

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  11. Leigh O'Connor

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  12. Gergana Shipkovenska

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  13. Lars M Steinmeetz

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  14. Jane Mellor

    University of Oxford, Oxford, United Kingdom
    For correspondence
    jane.mellor@bioch.ox.ac.uk
    Competing interests
    Jane Mellor, I am an advisor to Oxford Biodynamics Ltd and Sibelius Ltd and sit on the board of Chronos Therapeutics. OBD provided funding for this work but like all the funders, had no say in the design or outcome of the research and do not benefit in any way from this research.

Reviewing Editor

  1. Joaquin M Espinosa, Howard Hughes Medical Institute, University of Colorado, United States

Version history

  1. Received: June 8, 2014
  2. Accepted: November 17, 2014
  3. Accepted Manuscript published: November 19, 2014 (version 1)
  4. Version of Record published: December 24, 2014 (version 2)

Copyright

© 2014, Nguyen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,981
    views
  • 399
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tania Nguyen
  2. Harry Fischl
  3. Françoise S Howe
  4. Ronja Woloszczuk
  5. Ana Serra Barros
  6. Zhenyu Xu
  7. David Brown
  8. Struan C Murray
  9. Simon Haenni
  10. James M Halstead
  11. Leigh O'Connor
  12. Gergana Shipkovenska
  13. Lars M Steinmeetz
  14. Jane Mellor
(2014)
Transcription mediated insulation and interference direct gene cluster expression switches
eLife 3:e03635.
https://doi.org/10.7554/eLife.03635

Share this article

https://doi.org/10.7554/eLife.03635

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.