Abstract

In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.

Article and author information

Author details

  1. Tania Nguyen

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Harry Fischl

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Françoise S Howe

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Ronja Woloszczuk

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Ana Serra Barros

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Zhenyu Xu

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  7. David Brown

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  8. Struan C Murray

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  9. Simon Haenni

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  10. James M Halstead

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  11. Leigh O'Connor

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  12. Gergana Shipkovenska

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  13. Lars M Steinmeetz

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    No competing interests declared.
  14. Jane Mellor

    University of Oxford, Oxford, United Kingdom
    For correspondence
    jane.mellor@bioch.ox.ac.uk
    Competing interests
    Jane Mellor, I am an advisor to Oxford Biodynamics Ltd and Sibelius Ltd and sit on the board of Chronos Therapeutics. OBD provided funding for this work but like all the funders, had no say in the design or outcome of the research and do not benefit in any way from this research.

Reviewing Editor

  1. Joaquin M Espinosa, Howard Hughes Medical Institute, University of Colorado, United States

Version history

  1. Received: June 8, 2014
  2. Accepted: November 17, 2014
  3. Accepted Manuscript published: November 19, 2014 (version 1)
  4. Version of Record published: December 24, 2014 (version 2)

Copyright

© 2014, Nguyen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,973
    views
  • 398
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tania Nguyen
  2. Harry Fischl
  3. Françoise S Howe
  4. Ronja Woloszczuk
  5. Ana Serra Barros
  6. Zhenyu Xu
  7. David Brown
  8. Struan C Murray
  9. Simon Haenni
  10. James M Halstead
  11. Leigh O'Connor
  12. Gergana Shipkovenska
  13. Lars M Steinmeetz
  14. Jane Mellor
(2014)
Transcription mediated insulation and interference direct gene cluster expression switches
eLife 3:e03635.
https://doi.org/10.7554/eLife.03635

Share this article

https://doi.org/10.7554/eLife.03635

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.