Juxtaposition of heterozygosity and homozygosity during meiosis causes reciprocal crossover remodeling via interference

  1. Piotr A Ziolkowski
  2. Luke E Berchowitz
  3. Christophe Lambing
  4. Nataliya E Yelina
  5. Xiaohui Zhao
  6. Krystyna A Kelly
  7. Kyuha Choi
  8. Liliana Ziolkowska
  9. Viviana June
  10. Eugenio Sanchez-Moran
  11. Chris Franklin
  12. Gregory P Copenhaver
  13. Ian R Henderson  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University of North Carolina at Chapel Hill, United States
  3. University of Birmingham, United Kingdom

Abstract

During meiosis homologous chromosomes undergo crossover recombination. Sequence differences between homologs can locally inhibit crossovers. Despite this nucleotide diversity and population-scaled recombination are positively correlated in eukaryote genomes. To investigate interactions between heterozygosity and recombination we crossed Arabidopsis lines carrying fluorescent crossover reporters to 32 diverse accessions and observed hybrids with significantly higher and lower crossovers than homozygotes. Using recombinant populations derived from these crosses we observed that heterozygous regions increase crossovers when juxtaposed with homozygous regions, which reciprocally decrease. Total crossovers measured by chiasmata were unchanged when heterozygosity was varied, consistent with homeostatic control. We tested the effects of heterozygosity in mutants where the balance of interfering and non-interfering crossover repair is altered. Crossover remodeling at homozygosity-heterozygosity junctions requires interference and non-interfering repair is inefficient in heterozygous regions. As a consequence heterozygous regions show stronger crossover interference. Our findings reveal how varying homolog polymorphism patterns can shape meiotic recombination.

Article and author information

Author details

  1. Piotr A Ziolkowski

    Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Luke E Berchowitz

    Department of Biology and the Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christophe Lambing

    Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Nataliya E Yelina

    Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Xiaohui Zhao

    Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Krystyna A Kelly

    Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Kyuha Choi

    Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Liliana Ziolkowska

    Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Viviana June

    Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Eugenio Sanchez-Moran

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Chris Franklin

    School of Biosciences, University of Birmingham, Birmingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Gregory P Copenhaver

    Department of Biology, Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Ian R Henderson

    Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    irh25@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Ziolkowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,868
    views
  • 890
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Piotr A Ziolkowski
  2. Luke E Berchowitz
  3. Christophe Lambing
  4. Nataliya E Yelina
  5. Xiaohui Zhao
  6. Krystyna A Kelly
  7. Kyuha Choi
  8. Liliana Ziolkowska
  9. Viviana June
  10. Eugenio Sanchez-Moran
  11. Chris Franklin
  12. Gregory P Copenhaver
  13. Ian R Henderson
(2015)
Juxtaposition of heterozygosity and homozygosity during meiosis causes reciprocal crossover remodeling via interference
eLife 4:e03708.
https://doi.org/10.7554/eLife.03708

Share this article

https://doi.org/10.7554/eLife.03708

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.