A kinase-independent function of AKT promotes cancer cell survival

  1. Igor Vivanco
  2. Zhi C Chen
  3. Barbara Tanos
  4. Barbara Oldrini
  5. Wan-Ying Hsieh
  6. Nicolas Yannuzzi
  7. Carl Campos
  8. Ingo K Mellinghoff  Is a corresponding author
  1. Memorial Sloan-Kettering Cancer Center, United States
  2. Spanish National Cancer Research Centre, Spain
  3. Weill-Cornell Graduate School of Biomedical Sciences, United States

Abstract

The serine-threonine kinase AKT regulates proliferation and survival by phosphorylating a network of protein substrates. Here we describe a kinase-independent function of AKT. In cancer cells harboring gain-of-function alterations in MET, HER2, or Phosphatidyl-Inositol-3-Kinase (PI3-K), catalytically-inactive AKT (K179M) protected from druginduced cell death in a PH-domain dependent manner. An AKT kinase domain mutant found in human melanoma (G161V) lacked enzymatic activity in-vitro and in AKT1/AKT2 double knockout cells, but promoted growth-factor independent survival of primary human melanocytes. ATP-competitive AKT inhibitors failed to block the kinase-independent function of AKT, a liability that limits their effectiveness compared to allosteric AKT inhibitors. Our results broaden the current view of AKT function and have important implications for the development of AKT inhibitors for cancer.

Article and author information

Author details

  1. Igor Vivanco

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhi C Chen

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Barbara Tanos

    Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Barbara Oldrini

    Seve Ballesteros Foundation Brain Tumor Group, Spanish National Cancer Research Centre, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Wan-Ying Hsieh

    Department of Pharmacology, Weill-Cornell Graduate School of Biomedical Sciences, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicolas Yannuzzi

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Carl Campos

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ingo K Mellinghoff

    Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    For correspondence
    mellingi@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Vivanco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,650
    views
  • 735
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Igor Vivanco
  2. Zhi C Chen
  3. Barbara Tanos
  4. Barbara Oldrini
  5. Wan-Ying Hsieh
  6. Nicolas Yannuzzi
  7. Carl Campos
  8. Ingo K Mellinghoff
(2014)
A kinase-independent function of AKT promotes cancer cell survival
eLife 3:e03751.
https://doi.org/10.7554/eLife.03751

Share this article

https://doi.org/10.7554/eLife.03751

Further reading

    1. Cell Biology
    Kelsey R Baron, Samantha Oviedo ... R Luke Wiseman
    Research Article

    Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) – comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI – is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.

    1. Cell Biology
    Marjan Slak Rupnik
    Insight

    Functional subpopulations of β-cells emerge to control pulsative insulin secretion in the pancreatic islets of mice through calcium oscillations.