CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans

  1. Benjamin P Weaver
  2. Rebecca Zabinsky
  3. Yi M Weaver
  4. Eui Seung Lee
  5. Ding Xue
  6. Min Han  Is a corresponding author
  1. University of Colorado Boulder, United States
  2. Howard Hughes Medical Institute, University of Colorado Boulder, United States

Abstract

Genetic redundancy and pleiotropism have limited the discovery of functions associated with miRNAs and other regulatory mechanisms. To overcome this, we performed an enhancer screen for developmental defects caused by compromising both global miRISC function and individual genes in C. elegans. Among 126 interactors with miRNAs, we surprisingly found the CED-3 caspase that has only been well studied for its role in promoting apoptosis, mostly through protein activation. We provide evidence for a non-apoptotic function of CED-3 caspase that regulates multiple developmental events through proteolytic inactivation. Specifically, LIN-14, LIN-28 and DISL-2 proteins are known miRNA targets, key regulators of developmental timing, and/or stem cell pluripotency factors involved in miRNA processing. We show CED-3 cleaves these proteins in vitro. We also show CED-3 down-regulates LIN-28 in vivo, possibly rendering it more susceptible to proteasomal degradation. This mechanism may critically contribute to the robustness of gene expression dynamics governing proper developmental control.

Article and author information

Author details

  1. Benjamin P Weaver

    University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Rebecca Zabinsky

    University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yi M Weaver

    Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eui Seung Lee

    University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ding Xue

    University of Colorado Boulder, Boulder, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Min Han

    Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
    For correspondence
    mhan@colorado.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Weaver et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,811
    views
  • 309
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin P Weaver
  2. Rebecca Zabinsky
  3. Yi M Weaver
  4. Eui Seung Lee
  5. Ding Xue
  6. Min Han
(2014)
CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans
eLife 3:e04265.
https://doi.org/10.7554/eLife.04265

Share this article

https://doi.org/10.7554/eLife.04265

Further reading

    1. Developmental Biology
    Martina Jabloñski, Guillermina M Luque ... Mariano G Buffone
    Research Article

    Mammalian sperm delve into the female reproductive tract to fertilize the female gamete. The available information about how sperm regulate their motility during the final journey to the fertilization site is extremely limited. In this work, we investigated the structural and functional changes in the sperm flagellum after acrosomal exocytosis (AE) and during the interaction with the eggs. The evidence demonstrates that the double helix actin network surrounding the mitochondrial sheath of the midpiece undergoes structural changes prior to the motility cessation. This structural modification is accompanied by a decrease in diameter of the midpiece and is driven by intracellular calcium changes that occur concomitant with a reorganization of the actin helicoidal cortex. Midpiece contraction occurs in a subset of cells that undergo AE, and live-cell imaging during in vitro fertilization showed that the midpiece contraction is required for motility cessation after fusion is initiated. These findings provide the first evidence of the F-actin network’s role in regulating sperm motility, adapting its function to meet specific cellular requirements during fertilization, and highlighting the broader significance of understanding sperm motility.

    1. Developmental Biology
    2. Genetics and Genomics
    Ignacy Czajewski, Bijayalaxmi Swain ... Daan MF van Aalten
    Research Article

    O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.