Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells

  1. Yuntao Duan
  2. Shih-Hsiu Wang
  3. Juan Song
  4. Yevgeniya Mironova
  5. Guo-li Ming
  6. Alex L Kolodkin
  7. Roman J Giger  Is a corresponding author
  1. University of Michigan School of Medicine, United States
  2. Johns Hopkins University School of Medicine, United States
  3. University of North Carolina, United States

Abstract

Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene, however its function in brain development is unknown. Here we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally-born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally- and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.

Article and author information

Author details

  1. Yuntao Duan

    University of Michigan School of Medicine, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shih-Hsiu Wang

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Juan Song

    University of North Carolina, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Yevgeniya Mironova

    University of Michigan School of Medicine, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Guo-li Ming

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex L Kolodkin

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Roman J Giger

    University of Michigan School of Medicine, Ann Arbor, United States
    For correspondence
    rgiger@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Freda Miller, The Hospital for Sick Children Research Institute, University of Toronto, Canada

Ethics

Animal experimentation: All mice used in this study were housed and cared for in accordance with NIH guidelines, and all research conducted was done with the approval of the University of Michigan Medical School (UCUCA protocols PRO00002466 and PRO00001645) and The Johns Hopkins University (MO14M50 and MO12M381) Committees on Use and Care of Animals. All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: August 16, 2014
  2. Accepted: October 13, 2014
  3. Accepted Manuscript published: October 14, 2014 (version 1)
  4. Version of Record published: November 19, 2014 (version 2)

Copyright

© 2014, Duan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,099
    views
  • 612
    downloads
  • 93
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuntao Duan
  2. Shih-Hsiu Wang
  3. Juan Song
  4. Yevgeniya Mironova
  5. Guo-li Ming
  6. Alex L Kolodkin
  7. Roman J Giger
(2014)
Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells
eLife 3:e04390.
https://doi.org/10.7554/eLife.04390

Share this article

https://doi.org/10.7554/eLife.04390

Further reading

    1. Developmental Biology
    2. Neuroscience
    Melody C Iacino, Taylor A Stowe ... Mark J Ferris
    Research Article Updated

    Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.