The long non-coding RNA Dali is an epigenetic regulator of neural differentiation

  1. Vladislava Chalei
  2. Stephen N Sansom
  3. Lesheng Kong
  4. Sheena Lee
  5. Juan Montiel
  6. Keith W Vance
  7. Chris P Ponting  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Oxford University, United Kingdom
  3. University of Bath, United Kingdom

Abstract

Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes.

Article and author information

Author details

  1. Vladislava Chalei

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Stephen N Sansom

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Lesheng Kong

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Sheena Lee

    Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Juan Montiel

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Keith W Vance

    University of Bath, Bath, United Kingdom
    Competing interests
    No competing interests declared.
  7. Chris P Ponting

    University of Oxford, Oxford, United Kingdom
    For correspondence
    Chris.Ponting@dpag.ox.ac.uk
    Competing interests
    Chris P Ponting, Senior editor, eLife.

Reviewing Editor

  1. Thomas R Gingeras, Cold Spring Harbor Laboratory, United States

Ethics

Animal experimentation: All animal experiments were conducted in accordance to schedule one UK Home Office guidelines (Scientific Procedures Act, 1986).

Version history

  1. Received: August 28, 2014
  2. Accepted: November 21, 2014
  3. Accepted Manuscript published: November 21, 2014 (version 1)
  4. Version of Record published: December 16, 2014 (version 2)

Copyright

© 2014, Chalei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,714
    views
  • 642
    downloads
  • 139
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vladislava Chalei
  2. Stephen N Sansom
  3. Lesheng Kong
  4. Sheena Lee
  5. Juan Montiel
  6. Keith W Vance
  7. Chris P Ponting
(2014)
The long non-coding RNA Dali is an epigenetic regulator of neural differentiation
eLife 3:e04530.
https://doi.org/10.7554/eLife.04530

Share this article

https://doi.org/10.7554/eLife.04530

Further reading

    1. Biochemistry and Chemical Biology
    Benjamin R Duewell, Naomi E Wilson ... Scott D Hansen
    Research Article

    Phosphoinositide 3-kinase (PI3K) beta (PI3Kβ) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kβ prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kβ localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kβ when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kβ membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kβ prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GβGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kβ to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GβGγ or pY/Rac1(GTP), PI3Kβ activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kβ is synergistically activated by pY/GβGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.

    1. Biochemistry and Chemical Biology
    Pattama Wiriyasermkul, Satomi Moriyama ... Shushi Nagamori
    Research Article

    Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.