The long non-coding RNA Dali is an epigenetic regulator of neural differentiation

  1. Vladislava Chalei
  2. Stephen N Sansom
  3. Lesheng Kong
  4. Sheena Lee
  5. Juan Montiel
  6. Keith W Vance
  7. Chris P Ponting  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Oxford University, United Kingdom
  3. University of Bath, United Kingdom

Abstract

Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes.

Article and author information

Author details

  1. Vladislava Chalei

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Stephen N Sansom

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Lesheng Kong

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Sheena Lee

    Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Juan Montiel

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Keith W Vance

    University of Bath, Bath, United Kingdom
    Competing interests
    No competing interests declared.
  7. Chris P Ponting

    University of Oxford, Oxford, United Kingdom
    For correspondence
    Chris.Ponting@dpag.ox.ac.uk
    Competing interests
    Chris P Ponting, Senior editor, eLife.

Ethics

Animal experimentation: All animal experiments were conducted in accordance to schedule one UK Home Office guidelines (Scientific Procedures Act, 1986).

Copyright

© 2014, Chalei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,729
    views
  • 643
    downloads
  • 140
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vladislava Chalei
  2. Stephen N Sansom
  3. Lesheng Kong
  4. Sheena Lee
  5. Juan Montiel
  6. Keith W Vance
  7. Chris P Ponting
(2014)
The long non-coding RNA Dali is an epigenetic regulator of neural differentiation
eLife 3:e04530.
https://doi.org/10.7554/eLife.04530

Share this article

https://doi.org/10.7554/eLife.04530

Further reading

    1. Biochemistry and Chemical Biology
    Reto B Cola, Salome N Niethammer ... Tommaso Patriarchi
    Tools and Resources

    Class-B1 G-protein-coupled receptors (GPCRs) are an important family of clinically relevant drug targets that remain difficult to investigate via high-throughput screening and in animal models. Here, we engineered PAClight1P78A, a novel genetically encoded sensor based on a class-B1 GPCR (the human PAC1 receptor, hmPAC1R) endowed with high dynamic range (ΔF/F0 = 1100%), excellent ligand selectivity, and rapid activation kinetics (τON = 1.15 s). To showcase the utility of this tool for in vitro applications, we thoroughly characterized and compared its expression, brightness and performance between PAClight1P78A-transfected and stably expressing cells. Demonstrating its use in animal models, we show robust expression and fluorescence responses upon exogenous ligand application ex vivo and in vivo in mice, as well as in living zebrafish larvae. Thus, the new GPCR-based sensor can be used for a wide range of applications across the life sciences empowering both basic research and drug development efforts.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Caleb Chang, Grace Zhou, Yang Gao
    Research Article

    Metal-ion-dependent nucleases play crucial roles in cellular defense and biotechnological applications. Time-resolved crystallography has resolved catalytic details of metal-ion-dependent DNA hydrolysis and synthesis, uncovering the essential roles of multiple metal ions during catalysis. The histidine-metal (His-Me) superfamily nucleases are renowned for binding one divalent metal ion and requiring a conserved histidine to promote catalysis. Many His-Me family nucleases, including homing endonucleases and Cas9 nuclease, have been adapted for biotechnological and biomedical applications. However, it remains unclear how the single metal ion in His-Me nucleases, together with the histidine, promotes water deprotonation, nucleophilic attack, and phosphodiester bond breakage. By observing DNA hydrolysis in crystallo with His-Me I-PpoI nuclease as a model system, we proved that only one divalent metal ion is required during its catalysis. Moreover, we uncovered several possible deprotonation pathways for the nucleophilic water. Interestingly, binding of the single metal ion and water deprotonation are concerted during catalysis. Our results reveal catalytic details of His-Me nucleases, which is distinct from multi-metal-ion-dependent DNA polymerases and nucleases.