The long non-coding RNA Dali is an epigenetic regulator of neural differentiation

  1. Vladislava Chalei
  2. Stephen N Sansom
  3. Lesheng Kong
  4. Sheena Lee
  5. Juan Montiel
  6. Keith W Vance
  7. Chris P Ponting  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. Oxford University, United Kingdom
  3. University of Bath, United Kingdom

Abstract

Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes.

Article and author information

Author details

  1. Vladislava Chalei

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Stephen N Sansom

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Lesheng Kong

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Sheena Lee

    Oxford University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Juan Montiel

    University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Keith W Vance

    University of Bath, Bath, United Kingdom
    Competing interests
    No competing interests declared.
  7. Chris P Ponting

    University of Oxford, Oxford, United Kingdom
    For correspondence
    Chris.Ponting@dpag.ox.ac.uk
    Competing interests
    Chris P Ponting, Senior editor, eLife.

Ethics

Animal experimentation: All animal experiments were conducted in accordance to schedule one UK Home Office guidelines (Scientific Procedures Act, 1986).

Copyright

© 2014, Chalei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,734
    views
  • 644
    downloads
  • 140
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vladislava Chalei
  2. Stephen N Sansom
  3. Lesheng Kong
  4. Sheena Lee
  5. Juan Montiel
  6. Keith W Vance
  7. Chris P Ponting
(2014)
The long non-coding RNA Dali is an epigenetic regulator of neural differentiation
eLife 3:e04530.
https://doi.org/10.7554/eLife.04530

Share this article

https://doi.org/10.7554/eLife.04530

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Gina Partipilo, Yang Gao ... Benjamin K Keitz
    Feature Article

    Troubleshooting is an important part of experimental research, but graduate students rarely receive formal training in this skill. In this article, we describe an initiative called Pipettes and Problem Solving that we developed to teach troubleshooting skills to graduate students at the University of Texas at Austin. An experienced researcher presents details of a hypothetical experiment that has produced unexpected results, and students have to propose new experiments that will help identify the source of the problem. We also provide slides and other resources that can be used to facilitate problem solving and teach troubleshooting skills at other institutions.

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Hao Wang, Biying Zhu ... Zhaoliang Zhang
    Research Article

    Ethylamine (EA), the precursor of theanine biosynthesis, is synthesized from alanine decarboxylation by alanine decarboxylase (AlaDC) in tea plants. AlaDC evolves from serine decarboxylase (SerDC) through neofunctionalization and has lower catalytic activity. However, lacking structure information hinders the understanding of the evolution of substrate specificity and catalytic activity. In this study, we solved the X-ray crystal structures of AlaDC from Camellia sinensis (CsAlaDC) and SerDC from Arabidopsis thaliana (AtSerDC). Tyr341 of AtSerDC or the corresponding Tyr336 of CsAlaDC is essential for their enzymatic activity. Tyr111 of AtSerDC and the corresponding Phe106 of CsAlaDC determine their substrate specificity. Both CsAlaDC and AtSerDC have a distinctive zinc finger and have not been identified in any other Group II PLP-dependent amino acid decarboxylases. Based on the structural comparisons, we conducted a mutation screen of CsAlaDC. The results indicated that the mutation of L110F or P114A in the CsAlaDC dimerization interface significantly improved the catalytic activity by 110% and 59%, respectively. Combining a double mutant of CsAlaDCL110F/P114A with theanine synthetase increased theanine production 672% in an in vitro system. This study provides the structural basis for the substrate selectivity and catalytic activity of CsAlaDC and AtSerDC and provides a route to more efficient biosynthesis of theanine.