General principles for the formation and proliferation of a wall-free (L-form) state in bacteria
Abstract
The peptidoglycan cell wall is a defining structural feature of the bacterial-kingdom. Curiously, some bacteria have the ability to switch to a wall-free or 'L-form' state. Although known for decades, the general properties of L-forms are poorly understood, largely due to the lack of their systematic analysis in the molecular biology era. Here we show that inhibition of the peptidoglycan precursor synthesis promotes the generation of L-forms from both Gram-positive and Gram-negative bacteria. We show that L-forms generated have in common a mechanism of proliferation involving membrane blebbing and tubulation, which is dependant on an altered rate of membrane synthesis. Crucially, this mode of proliferation is independent of the essential FtsZ-based division machinery. Our results suggest that the L-form mode of proliferation is conserved across the bacterial-kingdom, reinforcing the idea that it could have been used in primitive cells, and opening up its use in the generation of synthetic cells.
Article and author information
Author details
Copyright
© 2014, Mercier et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,437
- views
-
- 982
- downloads
-
- 101
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
Some bacteria can survive and thrive despite not having a cell wall.
-
- Cancer Biology
- Cell Biology
TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.