Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation

Abstract

Four stress-sensing kinases phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) to activate the integrated stress response (ISR). In animals, the ISR is antagonised by selective eIF2α phosphatases comprising a catalytic protein phosphatase 1 (PP1) subunit in complex with a PPP1R15-type regulatory subunit. An unbiased search for additional conserved components of the PPP1R15-PP1 phosphatase identified monomeric G-actin. Like PP1, G-actin associated with the functional core of PPP1R15 family members and G-actin depletion, by the marine toxin jasplakinolide, destabilised the endogenous PPP1R15A-PP1 complex. The abundance of the ternary PPP1R15-PP1-G-actin complex was responsive to global changes in the polymeric status of actin, as was its eIF2α-directed phosphatase activity, while localised G-actin depletion at sites enriched for PPP1R15 enhanced eIF2α phosphorylation and the downstream ISR. G-actin's role as an stabilizer of the PPP1R15-containing holophosphatase provides a mechanism for integrating signals regulating actin dynamics with stresses that trigger the ISR.

Article and author information

Author details

  1. Joseph E Chambers

    Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  2. Lucy E Dalton

    Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Hanna J Clarke

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  4. Elke Malzer

    Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  5. Caia S Dominicus

    Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  6. Vruti Patel

    Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  7. Greg Moorhead

    Department of Biological Sciences, University of Calgary, Calgary, Canada
    Competing interests
    No competing interests declared.
  8. David Ron

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    David Ron, Reviewing editor, eLife.
  9. Stefan J Marciniak

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    sjm20@cam.ac.uk
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. W James Nelson, Stanford University, United States

Version history

  1. Received: September 23, 2014
  2. Accepted: March 12, 2015
  3. Accepted Manuscript published: March 16, 2015 (version 1)
  4. Version of Record published: April 13, 2015 (version 2)

Copyright

© 2015, Chambers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,110
    views
  • 1,029
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph E Chambers
  2. Lucy E Dalton
  3. Hanna J Clarke
  4. Elke Malzer
  5. Caia S Dominicus
  6. Vruti Patel
  7. Greg Moorhead
  8. David Ron
  9. Stefan J Marciniak
(2015)
Actin dynamics tune the integrated stress response by regulating eukaryotic initiation factor 2α dephosphorylation
eLife 4:e04872.
https://doi.org/10.7554/eLife.04872

Share this article

https://doi.org/10.7554/eLife.04872

Further reading

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.