Gap junctions composed of connexions 41.8 and 39.4 are essential for colour pattern formation in zebrafish

  1. Uwe Irion  Is a corresponding author
  2. Hans Georg Frohnhöfer
  3. Jana Krauss
  4. Tuǧba Çolak Champollion
  5. Hans-Martin Maischein
  6. Silke Geiger-Rudolph
  7. Christian Weiler
  8. Christiane Nüsslein-Volhard
  1. Max Planck Institute for Developmental Biology, Germany
  2. Max Planck Institue for Developmental Biology, Germany
  3. NYU Langone Medical Center, United States
  4. Max Planck Institute for Heart and Lung Research, Germany

Abstract

Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish, however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores.

Article and author information

Author details

  1. Uwe Irion

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    For correspondence
    uwe.irion@tuebingen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Hans Georg Frohnhöfer

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jana Krauss

    Max Planck Institue for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Tuǧba Çolak Champollion

    Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hans-Martin Maischein

    Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Silke Geiger-Rudolph

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Weiler

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Christiane Nüsslein-Volhard

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Marianne E. Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: All animal experiments were performed in accordance with the rules of the State of Baden-Württemberg, Germany. The protocol for ENU mutagenesis was approved by the Regierungspräsidium Tübingen (Aktenzeichen: 35/9185.81-5/Tierversuch-Nr. E 1/09).

Version history

  1. Received: October 11, 2014
  2. Accepted: December 22, 2014
  3. Accepted Manuscript published: December 23, 2014 (version 1)
  4. Version of Record published: January 17, 2015 (version 2)

Copyright

© 2014, Irion et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,493
    views
  • 309
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Uwe Irion
  2. Hans Georg Frohnhöfer
  3. Jana Krauss
  4. Tuǧba Çolak Champollion
  5. Hans-Martin Maischein
  6. Silke Geiger-Rudolph
  7. Christian Weiler
  8. Christiane Nüsslein-Volhard
(2014)
Gap junctions composed of connexions 41.8 and 39.4 are essential for colour pattern formation in zebrafish
eLife 3:e05125.
https://doi.org/10.7554/eLife.05125

Share this article

https://doi.org/10.7554/eLife.05125

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.