Gap junctions composed of connexions 41.8 and 39.4 are essential for colour pattern formation in zebrafish

  1. Uwe Irion  Is a corresponding author
  2. Hans Georg Frohnhöfer
  3. Jana Krauss
  4. Tuǧba Çolak Champollion
  5. Hans-Martin Maischein
  6. Silke Geiger-Rudolph
  7. Christian Weiler
  8. Christiane Nüsslein-Volhard
  1. Max Planck Institute for Developmental Biology, Germany
  2. Max Planck Institue for Developmental Biology, Germany
  3. NYU Langone Medical Center, United States
  4. Max Planck Institute for Heart and Lung Research, Germany

Abstract

Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish, however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores.

Article and author information

Author details

  1. Uwe Irion

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    For correspondence
    uwe.irion@tuebingen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Hans Georg Frohnhöfer

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jana Krauss

    Max Planck Institue for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Tuǧba Çolak Champollion

    Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hans-Martin Maischein

    Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Silke Geiger-Rudolph

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Weiler

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Christiane Nüsslein-Volhard

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were performed in accordance with the rules of the State of Baden-Württemberg, Germany. The protocol for ENU mutagenesis was approved by the Regierungspräsidium Tübingen (Aktenzeichen: 35/9185.81-5/Tierversuch-Nr. E 1/09).

Copyright

© 2014, Irion et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,523
    views
  • 318
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Uwe Irion
  2. Hans Georg Frohnhöfer
  3. Jana Krauss
  4. Tuǧba Çolak Champollion
  5. Hans-Martin Maischein
  6. Silke Geiger-Rudolph
  7. Christian Weiler
  8. Christiane Nüsslein-Volhard
(2014)
Gap junctions composed of connexions 41.8 and 39.4 are essential for colour pattern formation in zebrafish
eLife 3:e05125.
https://doi.org/10.7554/eLife.05125

Share this article

https://doi.org/10.7554/eLife.05125

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.