Gap junctions composed of connexions 41.8 and 39.4 are essential for colour pattern formation in zebrafish

  1. Uwe Irion  Is a corresponding author
  2. Hans Georg Frohnhöfer
  3. Jana Krauss
  4. Tuǧba Çolak Champollion
  5. Hans-Martin Maischein
  6. Silke Geiger-Rudolph
  7. Christian Weiler
  8. Christiane Nüsslein-Volhard
  1. Max Planck Institute for Developmental Biology, Germany
  2. Max Planck Institue for Developmental Biology, Germany
  3. NYU Langone Medical Center, United States
  4. Max Planck Institute for Heart and Lung Research, Germany

Abstract

Interactions between all three pigment cell types are required to form the stripe pattern of adult zebrafish (Danio rerio), but their molecular nature is poorly understood. Mutations in leopard (leo), encoding Connexin41.8 (Cx41.8), a gap junction subunit, cause a phenotypic series of spotted patterns. A new dominant allele, leotK3, leads to a complete loss of the pattern, suggesting a dominant negative impact on another component of gap junctions. In a genetic screen we identified this component as Cx39.4 (luchs). Loss-of-function alleles demonstrate that luchs is required for stripe formation in zebrafish, however, the fins are almost not affected. Double mutants and chimeras, which show that leo and luchs are only required in xanthophores and melanophores, but not in iridophores, suggest that both connexins form heteromeric gap junctions. The phenotypes indicate that these promote homotypic interactions between melanophores and xanthophores, respectively, and those cells instruct the patterning of the iridophores.

Article and author information

Author details

  1. Uwe Irion

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    For correspondence
    uwe.irion@tuebingen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Hans Georg Frohnhöfer

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jana Krauss

    Max Planck Institue for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Tuǧba Çolak Champollion

    Skirball Institute of Biomolecular Medicine, NYU Langone Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hans-Martin Maischein

    Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Silke Geiger-Rudolph

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Christian Weiler

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Christiane Nüsslein-Volhard

    Max Planck Institute for Developmental Biology, Tuebingen, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Marianne E. Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: All animal experiments were performed in accordance with the rules of the State of Baden-Württemberg, Germany. The protocol for ENU mutagenesis was approved by the Regierungspräsidium Tübingen (Aktenzeichen: 35/9185.81-5/Tierversuch-Nr. E 1/09).

Version history

  1. Received: October 11, 2014
  2. Accepted: December 22, 2014
  3. Accepted Manuscript published: December 23, 2014 (version 1)
  4. Version of Record published: January 17, 2015 (version 2)

Copyright

© 2014, Irion et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,473
    views
  • 308
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Uwe Irion
  2. Hans Georg Frohnhöfer
  3. Jana Krauss
  4. Tuǧba Çolak Champollion
  5. Hans-Martin Maischein
  6. Silke Geiger-Rudolph
  7. Christian Weiler
  8. Christiane Nüsslein-Volhard
(2014)
Gap junctions composed of connexions 41.8 and 39.4 are essential for colour pattern formation in zebrafish
eLife 3:e05125.
https://doi.org/10.7554/eLife.05125

Share this article

https://doi.org/10.7554/eLife.05125

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.