SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants

  1. Andrea Mair
  2. Lorenzo Pedrotti
  3. Bernhard Wurzinger
  4. Dorothea Anrather
  5. Andrea Simeunovic
  6. Christoph Weiste
  7. Concetta Valerio
  8. Katrin Dietrich
  9. Tobias Kirchler
  10. Thomas Nägele
  11. Jesús Vicente Carbajosa
  12. Johannes Hanson
  13. Elena Baena-González
  14. Christina Chaban
  15. Wolfram Weckwerth
  16. Wolfgang Dröge-Laser
  17. Markus Teige  Is a corresponding author
  1. University of Vienna, Austria
  2. University of Würzburg, Germany
  3. Instituto Gulbenkian de Ciência, Portugal
  4. University of Tübingen, Germany
  5. Universidad Politécnica de Madrid, Spain
  6. Utrecht University, Netherlands

Abstract

Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites.

Article and author information

Author details

  1. Andrea Mair

    Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Lorenzo Pedrotti

    Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Bernhard Wurzinger

    Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Dorothea Anrather

    University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrea Simeunovic

    Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Christoph Weiste

    Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Concetta Valerio

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Katrin Dietrich

    Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Tobias Kirchler

    Department of Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Thomas Nägele

    Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Jesús Vicente Carbajosa

    Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  12. Johannes Hanson

    Department of Molecular Plant Physiology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Elena Baena-González

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  14. Christina Chaban

    Department of Plant Physiology, Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Wolfram Weckwerth

    Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  16. Wolfgang Dröge-Laser

    Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  17. Markus Teige

    Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
    For correspondence
    markus.teige@univie.ac.at
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Thorsten Nürnberger, University of Tubingen, Germany

Version history

  1. Received: November 30, 2014
  2. Accepted: August 10, 2015
  3. Accepted Manuscript published: August 11, 2015 (version 1)
  4. Accepted Manuscript updated: August 18, 2015 (version 2)
  5. Version of Record published: September 3, 2015 (version 3)

Copyright

© 2015, Mair et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,959
    Page views
  • 1,803
    Downloads
  • 174
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Mair
  2. Lorenzo Pedrotti
  3. Bernhard Wurzinger
  4. Dorothea Anrather
  5. Andrea Simeunovic
  6. Christoph Weiste
  7. Concetta Valerio
  8. Katrin Dietrich
  9. Tobias Kirchler
  10. Thomas Nägele
  11. Jesús Vicente Carbajosa
  12. Johannes Hanson
  13. Elena Baena-González
  14. Christina Chaban
  15. Wolfram Weckwerth
  16. Wolfgang Dröge-Laser
  17. Markus Teige
(2015)
SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants
eLife 4:e05828.
https://doi.org/10.7554/eLife.05828

Share this article

https://doi.org/10.7554/eLife.05828

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.