1. Computational and Systems Biology
  2. Neuroscience
Download icon

Probable nature of higher-dimensional symmetries underlying mammalian grid-cell activity patterns

  1. Alexander Mathis  Is a corresponding author
  2. Martin B Stemmler
  3. Andreas V M Herz
  1. Harvard University, United States
  2. Ludwig-Maximilians-Universität München, Germany
Research Article
  • Cited 13
  • Views 3,291
  • Annotations
Cite this article as: eLife 2015;4:e05979 doi: 10.7554/eLife.05979

Abstract

Lattices abound in nature - from the crystal structure of minerals to the honey-comb organization of ommatidia in the compound eye of insects. These arrangements provide solutions for optimal packings, efficient resource distribution and cryptographic protocols. Do lattices also play a role in how the brain represents information? We focus on higher-dimensional stimulus domains, with particular emphasis on neural representations of physical space, and derive which neuronal lattice codes maximize spatial resolution. For mammals navigating on a surface, we show that the hexagonal activity patterns of grid cells are optimal. For species that move freely in a 3D a face-centered cubic lattice is best. This prediction could be tested experimentally in flying bats, arboreal monkeys, or marine mammals. More generally, our theory suggests that the brain encodes higher-dimensional sensory or cognitive variables with populations of grid-cell-like neurons whose activity patterns exhibit lattice structures at multiple, nested scales.

Article and author information

Author details

  1. Alexander Mathis

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    amathis@fas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Martin B Stemmler

    Bernstein Center for Computational Neuroscience, Ludwig-Maximilians-Universität München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Andreas V M Herz

    Bernstein Center for Computational Neuroscience Munich, Ludwig-Maximilians-Universität München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mark S. Goldman, University of California at Davis, United States

Publication history

  1. Received: December 9, 2014
  2. Accepted: April 23, 2015
  3. Accepted Manuscript published: April 24, 2015 (version 1)
  4. Version of Record published: June 4, 2015 (version 2)

Copyright

© 2015, Mathis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,291
    Page views
  • 585
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Matteo D'Antonio et al.
    Research Article Updated
    1. Computational and Systems Biology
    2. Plant Biology
    Mary-Ann Blätke, Andrea Bräutigam
    Research Article Updated