Probable nature of higherdimensional symmetries underlying mammalian gridcell activity patterns
Abstract
Lattices abound in nature—from the crystal structure of minerals to the honeycomb organization of ommatidia in the compound eye of insects. These arrangements provide solutions for optimal packings, efficient resource distribution, and cryptographic protocols. Do lattices also play a role in how the brain represents information? We focus on higherdimensional stimulus domains, with particular emphasis on neural representations of physical space, and derive which neuronal lattice codes maximize spatial resolution. For mammals navigating on a surface, we show that the hexagonal activity patterns of grid cells are optimal. For species that move freely in three dimensions, a facecentered cubic lattice is best. This prediction could be tested experimentally in flying bats, arboreal monkeys, or marine mammals. More generally, our theory suggests that the brain encodes higherdimensional sensory or cognitive variables with populations of gridcelllike neurons whose activity patterns exhibit lattice structures at multiple, nested scales.
https://doi.org/10.7554/eLife.05979.001eLife digest
The brain of a mammal has to store vast amounts of information. The ability of animals to navigate through their environment, for example, depends on a map of the space around them being encoded in the electrical activity of a finite number of neurons. In 2014 the Nobel Prize in Physiology or Medicine was awarded to neuroscientists who had provided insights into this process. Two of the winners had shown that, in experiments on rats, the neurons in a specific region of the brain ‘fired’ whenever the rat was at any one of a number of points in space. When these points were plotted in two dimensions, they made a grid of interlocking hexagons, thereby providing the rat with a map of its environment.
However, many animals, such as bats and monkeys, navigate in three dimensions rather than two, and it is not clear whether these same hexagonal patterns are also used to represent threedimensional space. Mathis et al. have now used mathematical analysis to search for the most efficient way for the brain to represent a threedimensional region of space. This work suggests that the neurons need to fire at points that roughly correspond to the positions that individual oranges take up when they are stacked as tight as possible in a pile. Physicists call this arrangement a facecentered cubic lattice.
At least one group of experimental neuroscientists is currently making measurements on the firing of neurons in freely flying bats, so it should soon be possible to compare the predictions of Mathis et al. with data from experiments.
https://doi.org/10.7554/eLife.05979.002Introduction
In mammals, the neural representation of space rests on at least two classes of neurons. ‘Place cells’ discharge when an animal is near one particular location in its environment (O'Keefe and Dostrovsky, 1971). ‘Grid cells’ are active at multiple locations that span an imaginary hexagonal lattice covering the environment (Hafting et al., 2005) and have been found in rats, mice, crawling bats, and human beings (Hafting et al., 2005; Fyhn et al., 2008; Yartsev et al., 2011; Jacobs et al., 2013). These cells are believed to build a metric for space.
In these experiments, locomotion occurs on a horizontal plane. Theoretical and numerical studies suggest that the hexagonal lattice structure is best suited for representing such a twodimensional (2D) space (Guanella and Verschure, 2007; Mathis, 2012; Wei et al., 2013). In general, however, animals move in three dimensions (3D); this is particularly true for birds, tree dwellers, and fish. Their neuronal representation of 3D space may consist of a mosaic of lowerdimensional patches (Jeffery et al., 2013), as evidenced by recordings from climbing rats (Hayman et al., 2011). Place cells in flying bats, on the other hand, represent 3D space in a uniform and nearly isotropic manner (Yartsev and Ulanovsky, 2013).
As mammalian grid cells might represent space differently in 3D than in 2D, we study gridcell representations in arbitrarily highdimensional spaces and measure the accuracy of such representations in a population of neurons with periodic tuning curves. We measure the accuracy by the Fisher information (FI). Even though the firing fields between cells overlap, so as to ensure uniform coverage of space, we show how resolving the population's FI can be mapped onto the problem of packing nonoverlapping spheres, which also plays an important role in other coding problems and cryptography (Shannon, 1948; Conway and Sloane, 1992; Gray and Neuhoff, 1998). The optimal lattices are thus the ones with the highest packing ratio—the densest lattices represent space most accurately. This remarkably simple and straightforward answer implies that hexagonal lattices are optimal for representing 2D space. In 3D, our theory makes the experimentally testable prediction that grid cells will have firing fields positioned on a facecenteredcubic lattice or its equally dense nonlattice variant—a hexagonal close packing structure.
Unimodal tuning curves with a single preferred stimulus, which are characteristic for place cells or orientationselective neurons in visual cortex, have been extensively studied (Paradiso, 1988; Seung and Sompolinsky, 1993; Pouget et al., 1999; Zhang and Sejnowski, 1999; Bethge et al., 2002; Eurich and Wilke, 2000; Brown and Bäcker, 2006). This is also true for multimodal tuning curves that are periodic along orthogonal stimulus axes and generate repeating hypercubic (or hyperrectangular) activation patterns (Montemurro and Panzeri, 2006; Fiete et al., 2008; Mathis et al., 2012). Our results extend these studies by taking more general stimulus symmetries into account and lead us to hypothesize that optimal lattices not only underlie the neural representation of physical space, but will also be found in the representation of other highdimensional sensory or cognitive spaces.
Model
Population coding model for space
We consider the Ddimensional space ${\mathrm{\mathbb{R}}}^{D}$ in which spatial location is denoted by coordinates $x=\left({x}_{1},\dots ,{x}_{D}\right)\in {\mathrm{\mathbb{R}}}^{D}$. The animal's position in this space is encoded by N neurons. The dependence of the mean firing rate of each neuron i on x is called the neuron's tuning curve and will be denoted by Ω_{i}(x). To account for the trialtotrial variability in neuronal firing, spikes are generated stochastically according to a probability ${P}_{i}\left({k}_{i}\tau \text{\hspace{0.17em}}{\text{\Omega}}_{i}\left(x\right)\right)$ for neuron i to fire k_{i} spikes within a fixed time window τ. While two neurons can have correlated tuning curves Ω_{i}(x), we assume that the trialtotrial variability of any two neurons is independent of each other. Thus, the conditional probability of the N statistically independent neurons to fire (k_{1},…,k_{N}) spikes at position x summarizes the encoding model:
Decoding relies on inverting this conditional probability by asking: given a spike count vector K = (k_{1},…,k_{N}), where is the animal? Such a position estimate will be written as $\widehat{x}\left(K\right)$. How precisely the decoding can be done is assessed by calculating the average mean square error of the decoder. The average distance between the real position of the animal x and the estimate $\widehat{x}\left(K\right)$ is
given the population coding model $P\left(Kx\right)$. This error is called the resolution (Seung and Sompolinsky, 1993; Lehmann, 1998), whereby the term $\parallel .\parallel $ denotes Euclidean distance, $\parallel x\parallel =\sqrt{{\displaystyle \sum}_{\alpha}\text{\hspace{0.17em}}{x}_{\alpha}^{2}}$. More generally, the covariance matrix $\mathbf{\sum}\left(\widehat{x}x\right)$ with coefficients $\mathbf{\sum}{\left(\widehat{x}x\right)}_{\alpha ,\beta}={\mathbb{E}}_{P\left(Kx\right)}\left(\left({x}_{\alpha}\widehat{{x}_{\alpha}}\left(K\right)\right)\cdot \left({x}_{\beta}\widehat{{x}_{\beta}}\left(K\right)\right)\right)$ for spatial dimensions $\alpha ,\beta \in \left\{1,\dots ,D\right\}$, measures the covariance of the different error components, so that the sum of the diagonal elements of ∑ is just the resolution $\mathit{\epsilon}\left(\widehat{x}x\right)$. In principle, the resolution depends on both the specific decoder and the population coding model. However, for unbiased estimators, that is, estimators that on average decode the location x as this location ${\mathbb{E}}_{P\left(Kx\right)}\left(\widehat{x}\left(K\right)\right)=x$, the FI provides an analytical measure to assess the highest possible resolution of any such decoder (Lehmann, 1998).
Resolution and Fisher Information
Given a response of K = (k_{1},…,k_{N}) spikes across the population, we ask how accurately an ideal observer can decode the stimulus x. The FI measures how well one can discriminate nearby stimuli and depends on how P(x, K) changes with x. The greater the FI, the higher the resolution, and the lower the error $\mathit{\epsilon}\left(\widehat{x}x\right)$, as these two quantities are inversely related. More precisely, the inverse of the FI matrix J(x),
bounds the covariance matrix $\mathbf{\sum}\left(\widehat{x}x\right)$ of the estimated coordinates x = (x_{1},…,x_{D})
The resolution of any unbiased estimator of the encoded stimulus can achieve cannot be greater than J(x)^{−1}. This is known as the CramérRao bound (Lehmann, 1998). Based on this bound, we will consider the FI as a measure for the resolution of the population code. In particular, we are interested in isotropic and homogeneous representations of space. These two conditions assure that the population has the same resolution at any location and along any spatial axis. Isotropy does not entail that the (global) spatial tuning of an individual neuron, Ω_{i}(x), has to be radially symmetric, but merely that the errors are (locally) distributed according to a radially symmetric distribution. For instance, the tuning curve of a grid cell with hexagonal tuning is not radially symmetric around the center of a field (it has three axes), but the posterior is radially symmetric around any given location for a module of such grid cells. Homogeneity requires that the FI J(x) be asymptotically independent of x (as the number of neurons N becomes large); spatial isotropy implies that all diagonal entries in the FI matrix J(x) are equal.
Periodic tuning curves
Grid cells have periodic tuning curves—they are active at multiple locations, called firing fields, and these firing fields are hexagonally arranged in the environment (Hafting et al., 2005). Their periodic structure is given by a hexagonal lattice. The periodic structure of the tuning curve Ω_{i}(x) reflects its symmetries, that is, the set of vectors that map the tuning curve onto itself. Since we want to understand how the periodic structure affects the resolution of the population code, we generalize the notion of a grid cell to allow different periodic structures other than just hexagonal. Mathematically, the symmetries of a periodic structure can be described by a lattice $\mathcal{L}$, which is constructed as follows: take a set of independent vectors (v_{α})_{1≤α≤D} in Ddimensional space ${\mathrm{\mathbb{R}}}^{D}$, and consider all possible combinations of these vectors and their integer multiples—each such vector combination points to a node of the lattice, such that the union of these represents the lattice itself. For instance, the square lattice (Figure 1A, bottom) is given by basis vectors v_{1} = (1, 0) and v_{2} = (0, 1). Mathematically, the lattice $\mathcal{L}\subset {\mathrm{\mathbb{R}}}^{D}$ is
for which (v_{α})_{1≤α≤D} is a basis of ${\mathrm{\mathbb{R}}}^{D}$. We will not consider degenerate lattices. In this work, we follow the nomenclature from Conway and Sloane (1992). Applied fields might differ slightly in their terminology, especially regarding naming conventions for packings, which are generalizations of lattices (Whittaker, 1981; Nelson, 2002). We will address these generalizations of lattices below.
Based on such a lattice $\mathcal{L}$, we construct periodic tuning curves as illustrated in Figure 1A. We start with a lattice $\mathcal{L}$ and a tuning shape $\text{\Omega}:{\mathrm{\mathbb{R}}}^{+}\to [0,1]$ that decays from unity to zero; Ω(r) describes the firing rate of the periodified tuning curve at distance r from any lattice point and should be at least twice continuously differentiable. Each lattice point $p\in \mathcal{L}$ has a domain ${V}_{p}\subset {\mathrm{\mathbb{R}}}^{D}$ called the Voronoi region, which is defined as
that contains all points x that are closer to p than to any other lattice point q. Note that V_{p} ∩ V_{q} = ϕ if p ≠ q and that for all $p,q\in \mathcal{L}$ there exists a unique vector $v\in \mathcal{L}$ with V_{p} = V_{q} + v.
The domain that contains the null (0) vector is called the fundamental domain and is denoted by L:= V_{0}. For each $x\in {\mathrm{\mathbb{R}}}^{D}$ there is a unique lattice point $p\in \mathcal{L}$ that maps x into the fundamental domain: $xp\in L$. Let us call this mapping ${\pi}_{\mathcal{L}}$. With this notation one can periodify Ω onto $\mathcal{L}$ by defining a grid cell's tuning curve as ${\text{\Omega}}^{\mathcal{L}}$:
where f_{max} is the peak firing rate of the neuron. Note that throughout the paper we set f_{max} = τ = 1, for simplicity. As illustrated in Figure 1A, within the fundamental domain L, the tuning curve ${\text{\Omega}}^{\mathcal{L}}$ defined above is radially symmetric. This pattern is repeated along the nodes of $\mathcal{L}$, akin to ceramic tiling.
A grid module is defined as an ensemble of M grid cells ${\text{\Omega}}_{i}^{\mathcal{L}}$, $i\in \left\{1,\dots ,M\right\}$ with identical, but spatially shifted tuning curves, that is, ${\text{\Omega}}_{i}^{\mathcal{L}}\left(x\right)={\text{\Omega}}^{\mathcal{L}+{c}_{i}}\left(x\right)$ and spatial phases ${c}_{i}\in L$ (see Figure 1B). The various phases within a module can be summarized by their phase density $\rho \left(c\right)={{{\displaystyle \sum}}^{\text{}}}_{i=1}^{M}\text{\hspace{0.17em}}\delta \left(c{c}_{i}\right)$. This definition is motivated by the observation of spatially shifted hexagonally tuned grid cells in the entorhinal cortex of rats (Hafting et al., 2005; Stensola et al., 2012).
Any grid module is uniquely characterized by its signature $\left(\text{\Omega},\rho ,\mathcal{L}\right)$. To investigate the role of different periodic structures, we can fix the tuning shape Ω and density ρ and solely vary the lattice $\mathcal{L}$ to find the lattice that yields the highest FI.
Results
To determine how the resolution of a grid module depends on the periodic structure $\mathcal{L}$, we compute the population FI J_{ς}(x) for a module of grid cells with signature $\varsigma =\left(\text{\Omega},\rho ,\mathcal{L}\right)$, which describes the tuning shape, the density of firing fields, and the lattice. By fixing the tuning shape Ω and the number $\left\rho \right=M$ of spatial phases, we can compare the resolution for different periodic structures. (Table 1 contains a glossary of the variables.)
Scaling of lattices and nested grid codes
Our gridcell construction has one obvious degree of freedom, the length scale or grid size of the lattice $\mathcal{L}$, that is, the width of the fundamental domain L. For a module with signature $\varsigma =\left(\text{\Omega},\rho ,\mathcal{L}\right)$ and for arbitrary scaling factor λ > 0, the rescaled construction $\lambda \varsigma :=\left(\text{\Omega}\left(\lambda r\right),\rho \left(\lambda x\right),\lambda \cdot \mathcal{L}\right)$ is a grid module too. The corresponding tuning curve satisfies ${\left(\text{\Omega}\circ \lambda \right)}_{\lambda \mathcal{L}}\left(x\right)={\text{\Omega}}_{\mathcal{L}}\left(\lambda x\right)$ and is thus merely a scaled version of the former. Indeed, as we show in the ‘Material and methods’ section, the FI of the rescaled module is λ^{−2} J_{ς}(0). The CramérRao bound (Equation 4) implies that the local resolution of an unbiased estimator could thus rapidly improve with a finer grid size, that is, decreasing λ.
However, for any grid module $\varsigma =\left(\text{\Omega},\rho ,\mathcal{L}\right)$ the posterior probability, that is, the likelihood of possible positions given a particular spike count vector K = (k_{1},…,k_{N}), is also periodic. This follows from Bayes rule:
Since the right hand side is invariant under operations of $\mathcal{L}$ on x, so is the left hand side of this equation. Thus, the multiple firing fields of a grid cell cannot be distinguished by a decoder, so that for λ → 0 the global resolution approaches the a priori uncertainty (Mathis et al., 2012a, 2012b). By combining multiple grid modules with different spatial periods one can overcome this fundamental limitation, counteracting the ambiguity caused by periodicity and still preserving the highest resolution at the smallest scale. Thus, one arrives at nested populations of grid modules, whose spatial periods range from coarse to fine. The FI for an individual module at one scale determines the optimal length scale of the next module (Mathis et al., 2012a, 2012b). The larger the FI per module, the greater the refinement at subsequent scales can be (Mathis et al., 2012a, 2012b). This result emphasizes the importance of finding the lattice that endows a grid module with maximal FI, but also highlights that the specific scale of the lattices can be fixed for this study.
FI of a grid module with lattice $\mathcal{L}$
We now calculate the FI for a grid module with signature $\varsigma =\left(\text{\Omega},\rho ,\mathcal{L}\right)$. For cells whose firing is statistically independent (Equation 1), the joint probability factorizes; therefore, the population FI is just the sum over the individual FI contributions by each neuron, ${\mathit{J}}_{\varsigma}\left(x\right)={{{\displaystyle \sum}}^{\text{}}}_{i=1}^{M}\text{\hspace{0.17em}}{\mathit{J}}_{{\text{\Omega}}_{i}^{\mathcal{L}}}\left(x\right)$. The individual neurons only differ by their spatial phase c_{i}, thus ${\mathit{J}}_{{\text{\Omega}}_{i}^{\mathcal{L}}}\left(x\right)={\mathit{J}}_{{\text{\Omega}}^{\mathcal{L}}}\left(x{c}_{i}\right)$. Consequently, ${\mathit{J}}_{\varsigma}\left(x\right)={{{\displaystyle \sum}}^{\text{}}}_{i=1}^{M}\text{\hspace{0.17em}}{\mathit{J}}_{{\text{\Omega}}^{\mathcal{L}}}\left(x{c}_{i}\right)$, depends only on the function ${J}_{{\text{\Omega}}^{\mathcal{L}}}\left(r\right)$ and the deviations x − c_{i}, where c_{i} is the closest lattice point of ${c}_{i}+\mathcal{L}$ to x. If the gridcell density ρ is uniform across $\mathcal{L}$, then for all $x\in {\mathrm{\mathbb{R}}}^{D}$: J_{ς}(x) ≈ J_{ς}(0). It therefore suffices to only consider the FI at the origin, which can be written as:
For uniformly distributed spatial phases c_{i} and increasing number of neurons M, the law of large numbers implies
Here, $\text{det}\left(\mathcal{L}\right)$ denotes the volume of the fundamental domain. Thus, for large numbers of neurons $M={{\displaystyle \int}}_{L}\text{\hspace{0.17em}}\rho \left(c\right)\text{d}c$ we obtain
This means that the population FI at 0 is approximately given by the average FI within the fundamental domain L times the number of neurons M. Let us now assume that supp(Ω) = [0, R] for some positive radius R. Outside of this radius, the tuning shape is zero and the firing rate vanishes. So the spatial phases of grid cells that contribute to the FI at x = 0 lie within the ball B_{R}(0). If we now also assume that this ball is contained in the fundamental domain, ${B}_{R}\left(0\right)\subset L$, we get
This result implies that any grid code $\varsigma =\left(\text{\Omega},\rho ,\mathcal{L}\right)$, with large M, supp(Ω) = [0, R], and ${B}_{R}\left(0\right)\subset L$, satisfies
The FI at the origin is therefore approximately equal to the product of the mean FI contribution of cells within a Rball around 0 and the number of neurons M, weighted by the ratio of the volume of the Rball to the area of the fundamental domain L. Due to the radial symmetry of ${\text{\Omega}}^{\mathcal{L}}$, the FI matrix ${\mathit{J}}_{{\text{\Omega}}^{\mathcal{L}}}\left(c\right)$ is diagonal with identical entries, guaranteeing the spatial resolution's isotropy. The error for each coordinate axis is bounded by the same value, that is, the inverse of the diagonal element 1/J_{ς}(0)_{ii}, for such a population. Instead of considering the FI matrix J_{ς}(0), we can therefore consider the trace of J_{ς}(0), which is the sum over the diagonal of J_{ς}(0). According to Equation 4, 1/trJ_{ς}(0) bounds the mean square error summed across all dimensions $\mathit{\epsilon}\left(\widehat{x}x\right)$.
For two lattices ${\mathcal{L}}_{1}$,${\mathcal{L}}_{2}$, with B_{R}(0) ⊂ L_{1}∩^{}L_{2} we consequently obtain
which signifies that the resolution of the grid module is inversely proportional to the volumes of their fundamental domains. The periodic structure $\mathcal{L}$ thus has a direct impact on the resolution of the grid module. This result implies that finding the maximum FI translates directly into finding the lattice with the highest packing ratio.
Packing ratio of lattices
The sphere packing problem is of general interest in mathematics (Conway and Sloane, 1992) and has wideranging applications from crystallography to information theory (Barlow, 1883; Shannon, 1948; Whittaker, 1981; Gray and Neuhoff, 1998; Gruber, 2004). When packing Rballs B_{R} in ${\mathrm{\mathbb{R}}}^{D}$ in a nonoverlapping fashion, the density of the packing is defined as the fraction of the space covered by balls. For a lattice $\mathcal{L}$, it is given by
which is known as the packing ratio $\text{\Delta}\left(\mathcal{L}\right)$ of the lattice. For a given lattice, this ratio is maximized by choosing the largest possible R, known as the packing radius, which is defined as the inradius of a Voronoi region containing the origin (Conway and Sloane, 1992). Figure 2 depicts the disks with the largest inradius for the hexagonal and the square lattice in blue and illustrates the packing ratio.
FI and packing ratio
We now come to the main finding of this study: among grid modules with different lattices, the lattice with the highest packing ratio leads to the highest spatial resolution.
To derive this result, let us fix a tuning shape Ω with supp(Ω) = [0, R], lattices ${\mathcal{L}}_{j}$ such that B_{R}(0) ⊂ L_{j} for 1 ≤ j ≤ K, and uniform densities ρ for each fundamental domain of equal cardinality M. Any linear order on the packing ratios,
is translated by Equation 14 into the same order for the traces of the FI
and thus the resolution of these modules: the higher the packing ratio, the higher the FI of a grid module.
The condition supp(Ω) = [0, R] with B_{R}(0) ⊂ L, although restrictive, is consistent with experimental observations that grid cells tend to stop firing between grid fields and that the typical ratio between field radius and spatial period is well below 1/2 (Hafting et al., 2005; Brun et al., 2008; Giocomo et al., 2011). Generally, the tuning width that maximizes the FI does not necessarily satisfy this condition; see Figures 3, 4, in which the optimal support radius of the tuning curve θ_{2} is greater than the inradius R = 1/2 of L. The same observation will hold in higher dimensions (D > 2), consistent with the finding that the optimal tuning width for Gaussian tuning curves increases with the number of spatial dimensions, whether space is infinite (Zhang and Sejnowski, 1999) or finite (Brown and Bäcker, 2006). When the radius R of the support of the tuning curve exceeds the inradius, the optimal lattice can be different from the densest one as we will show numerically for specific tuning curves and Poisson noise. However, with well separated fields, like those observed experimentally, the densest lattice provides the highest resolution for any tuning shape Ω, as we just demonstrated.
The optimal packing ratio of lattices for lowdimensional space is well known. Having established our main result, we can now draw on a rich body of literature, in particular Conway and Sloane (1992), to discuss the expected firingfield structure of grid cells in 2D and 3D environments.
Optimal 2D grid cells
With a packing ratio of $\pi /\sqrt{12}$, the hexagonal lattice is the densest lattice in the plane (Lagrange, 1773). According to Equation 14, the hexagonal lattice is the optimal arrangement for gridcell firing fields on the plane. For example, it outperforms the quadratic lattice, which has a density of π/4, by about 15.5% (see Figure 2). Consequently, the FI of a grid module periodified along a hexagonal lattice outperforms one periodified along a square lattice by the same factor.
To provide a tangible example, we calculated the trace of the average FI per neuron $\text{tr}{\mathit{J}}_{\varsigma}/{\displaystyle {\int}_{L}\text{\hspace{0.17em}}\rho}$ for signature $\varsigma =\left(\text{\Omega},\rho ,\mathcal{L}\right)$ and chose the lattice $\mathcal{L}$ to either be the hexagonal lattice $\mathcal{H}$ or the quadratic lattice $\mathcal{Q}$. We denote the trace of the average FI per neuron as: $\text{tr}{\mathit{J}}_{\mathcal{L}}$ = $\text{tr}{\mathit{J}}_{\varsigma}/{\displaystyle {\int}_{L}\text{\hspace{0.17em}}\rho}$; $\text{tr}{\mathit{J}}_{\mathcal{H}}$ and $\text{tr}{\mathit{J}}_{\mathcal{Q}}$ are similarly defined. We considered Poisson spike statistics and used a bumplike tuning shape Ω (Equation 26, ‘Materials and methods’ section). The tuning shape Ω depends on two parameters θ_{1} and θ_{2}, where θ_{1} controls the slope of the flank in Ω and θ_{2} defines the support radius. The periodified tuning curve ${\text{\Omega}}^{\mathcal{Q}}$ is illustrated for different parameters in the top of Figure 3A and in Figure 3—figure supplement 1.
Figure 3A depicts $\text{tr}{\mathit{J}}_{\mathcal{H}}$ and $\text{tr}{\mathit{J}}_{\mathcal{Q}}$ for various values of θ_{1} and θ_{2}. Quite generally, the FI is larger for grid modules with broad tuning (large θ_{2}) and steep tuning slopes (small θ_{1}). Figure 3A also demonstrates that as long as θ_{2} ≤ 1/2, $\text{tr}{\mathit{J}}_{\mathcal{H}}$ consistently outperforms $\text{tr}{\mathit{J}}_{\mathcal{Q}}$. But how large is this effect? As predicted by our theory, the grid module with the hexagonal lattice outperforms the square lattice by the relation of packing ratios $\sqrt{3}/2$, as long as the support radius θ_{2} is within the fundamental domain of the hexagonal and the square lattice of unit length, that is, θ_{2} ≤ 1/2 (bottom of Figure 3A). As the support radius becomes larger, the FI of the hexagonal lattice is no longer necessarily greater than that of the square lattice; the specific interplay of tuning curve and boundary shape determines which lattice is better: for θ_{1} = 1/4, $\text{tr}{\mathit{J}}_{\mathcal{H}}/\text{tr}{\mathit{J}}_{\mathcal{Q}}$ drops quickly beyond θ_{2} = 0.5, even though, for θ_{1} = 1, the ratio stays constant up to θ_{2} = 0.6.
Next we calculated the FI per neuron for a larger family of planar lattices generated by two unitary basis vectors with angle φ. Figure 3B displays $\text{tr}{\mathit{J}}_{\mathcal{L}}$ for φ ∈ [π/3, π/2], slope parameter θ_{1} = 1/4, and different support radii θ_{2}. For the lattice to have unitary length, the value φ cannot go below π/3. The $\text{tr}{\mathit{J}}_{\mathcal{L}}$ decays with increasing angle φ. Indeed, according to Equation 13, the FI falls like $1/\text{det\hspace{0.17em}}\mathcal{L}=1/\text{sin}\left(\phi \right)$ so that the maximum is achieved for the hexagonal lattice with π/3.
The FIs $\text{tr}{\mathit{J}}_{\mathcal{L}}$ are averages over all phases, under the assumption that the density of phases tends to a constant; but are these values also indicative for small neural populations? To answer this question, we calculated the FI for populations with 200 neurons, as some putative grid cells are found in patches of this size (Ray et al., 2014). For M = 200 randomly chosen phases (Figure 3C), the mean of the normalized FI $\text{tr}{\mathit{J}}_{\mathcal{L}}^{M}/M$ over 5000 realizations is well captured by the FI per neuron calculated in Figure 3A. Because of fluctuations in the FI, however, the square lattice is better than the hexagonal lattice in about 20% of the cases.
Our theory implies that for radially symmetric tuning curves the hexagonal lattice provides the best resolution among all planar lattices. This conclusion agrees with earlier findings: Wei et al. considered a notion of resolution defined as the range of the population code per smallest distinguishable scale and then demonstrated that a population of nested grid cells with hexagonal tuning is optimal for a winnertakeall and Bayesian maximum likelihood decoders (Wei et al., 2013). Guanella and Verschure numerically compared hexagonal to other regular lattices based on maximum likelihood decoding (Guanella and Verschure, 2007).
Optimal lattices for 3D grid cells
Gauss proved that the packing ratio of any cubic lattice is bounded by $\pi /(3\sqrt{2})$ and that this value is attained for the facecentered cubic ($\mathcal{F}\mathcal{C}\mathcal{C}$) lattice (Gauss, 1831) illustrated in Figure 4A. This implies that the optimal 3D gridcell tuning is given by the $\mathcal{F}\mathcal{C}\mathcal{C}$ lattice. For comparison, we also calculated the average population FI for two other important 3D lattices: the cubic lattice ($\mathcal{C}$) and the bodycentered cubic lattice ($\mathcal{B}\mathcal{C}\mathcal{C}$), both shown in Figure 4A.
Keeping the bumplike tuning shape Ω and independent Poisson noise, we compared the resolution of grid modules with such lattices (Figure 4B). Their averaged trace of FI is denoted by $\text{tr}{\mathit{J}}_{\mathcal{F}\mathcal{C}\mathcal{C}}$, $\text{tr}{\mathit{J}}_{\mathcal{B}\mathcal{C}\mathcal{C}}$, and $\text{tr}{\mathit{J}}_{\mathcal{C}}$, respectively. As long as the support θ_{2} of Ω is smaller than 1/2, the support is a subset of the fundamental domain of all three lattices. Hence, the trace of the population FI of the $\mathcal{F}\mathcal{C}\mathcal{C}$ outperforms both the $\mathcal{B}\mathcal{C}\mathcal{C}$ and $\mathcal{C}$ lattices. As the ratios of the trace of the population FI scales with the packing ratio (Figure 4C), $\mathcal{F}\mathcal{C}\mathcal{C}$grid cells provide roughly 41% more resolution for the same number of neurons than do $\mathcal{C}$grid cells. Similarly, $\mathcal{F}\mathcal{C}\mathcal{C}$grid cells provide 8.8% more FI than $\mathcal{B}\mathcal{C}\mathcal{C}$grid cells.
Next we calculated the FI per neuron for a large family of cubic lattices ${\mathcal{L}}_{\phi ,\psi}$ generated by three unitary basis vectors with spanning angles φ and ψ. Figure 4D displays $\text{tr}{\mathit{J}}_{{\mathcal{L}}_{\phi ,\psi}}$ for θ_{1} = θ_{2} = 1/4 and various φ and ψ. The resolution $\text{tr}{\mathit{J}}_{\mathcal{L}}$ decays with increasing angles and has its maximum for the lattice with the smallest volume as predicted by Equation 13.
To study finitesize effects, we simulated 5000 populations of 200 grid cells with random spatial phases. Qualitatively, the results (Figure 4E) match those in 2D (Figure 3C). Despite the small module size, $\mathcal{F}\mathcal{C}\mathcal{C}$ outperformed the cubic lattice $\mathcal{C}$ in all simulated realizations.
Equally optimal nonlattice solutions for gridcell tuning
Fruit is often arranged in an $\mathcal{F}\mathcal{C}\mathcal{C}$ formation (Figure 5A). One arrives at this lattice by starting from a layer of hexagonally placed spheres. This requires two basis vectors to be specified and is the densest packing in 2D. To maximize the packing ratio in 3D, the next layer of hexagonally arranged spheres has to be stacked as tightly as possible. There are two choices for the third and final basis vector achieve this packing, denoted as γ_{1} and γ_{2} in Figure 5B (modulo hexagonal symmetry). If one chooses γ_{1}, then two layers below there is no sphere with its center at location γ_{1}, but instead there is one at γ_{2} (and vice versa). This stacking of layers is shown in Figure 5C and generates the $\mathcal{F}\mathcal{C}\mathcal{C}$ lattice.
One could achieve the same density by choosing γ_{1} for both the top layer and the layer below the basis layer. Yet as this arrangement, called hexagonal close packing ($\mathcal{HCP}$), cannot be described by three vectors, it does not define a lattice (see Figure 5D), even though it is as tightly packed as the $\mathcal{F}\mathcal{C}\mathcal{C}$. Such packings, defined as an arrangement of equal nonoverlapping balls (Conway and Sloane, 1992; Hales, 2012), generalize lattices.
While one can define a grid module for any lattice, as we showed above, one cannot define a grid module in a meaningful way for an arbitrary packing, due to the lack of symmetry. But for any given packing $\mathcal{P}$ of ${\mathrm{\mathbb{R}}}^{D}$ by balls ${B}_{1}$ of radius 1, one can define a ‘grid cell’ by generalizing the definition given for lattices (Equation 7). To this end, consider the Voronoi partition of ${\mathrm{\mathbb{R}}}^{D}$ by $\mathcal{P}$. For each location $x\in {\mathrm{\mathbb{R}}}^{D}$ there is a unique Voronoi cell V_{p} with node $p\in \mathcal{P}$. One defines the grid cell's tuning curve ${\text{\Omega}}^{\mathcal{P}}\left(x\right)$ by assigning the firing rate according to $\text{\Omega}\left({\parallel px\parallel}^{2}\right)$ for tuning shape Ω and distance $\parallel px\parallel $. Depending on the specific packing, this tuning curve ${\text{\Omega}}^{\mathcal{P}}$ may or may not be periodic. Because a packing $\mathcal{P}$ often has fewer symmetries than a lattice $\mathcal{L}$, the ‘grid cells’ in an arbitrary $\mathcal{P}$ cannot generally be used to define a ‘grid module’. To explain why, consider an arbitrary packing and the unique Voronoi cell V_{0} that contains the point 0. Choose M uniformly distributed phases c_{1},…,c_{M} within V_{0}. Locations within V_{0} will then be uniformly covered by shifted tuning curves ${\text{\Omega}}_{i}\left(x\right):={\text{\Omega}}^{\mathcal{P}}\left(x{c}_{i}\right)$. However, typically the different Voronoi cells will neither be congruent, nor have similar volumes. Thus, the Ω_{i} will typically not cover each Voronoi cell with the same density and will therefore fail to define a proper grid module. This problem does not exist for lattices. Here, the equivalence classes ${c}_{i}+\mathcal{L}$ cover each cell with the same density.
Highly symmetric packings, on the other hand, do permit the definition of grid modules. For example, the hexagonal close packing $\mathcal{HCP}$ can be used to define a grid cell ${\text{\Omega}}^{\mathcal{HCP}}\left(x\right)$. Using the same symmetry argument from Equations 9–11, implies for the FI:
The maximal inradius R for the $\mathcal{HCP}$ with grid size λ = 1 is equal to 1/2. Like for lattices, we assume that supp(Ω) = [0, R] and B_{R}(0) ⊂ V_{0}. Then the integrand vanishes for distances larger than 1/2 from 0. Hence, we obtain:
Considering the same tuning shape Ω and number of phases M for an $\mathcal{F}\mathcal{C}\mathcal{C}$ lattice, which also has maximal inradius 1/2, Equation 13 gives us the following expression for the $\mathcal{F}\mathcal{C}\mathcal{C}$ lattice:
Since both fundamental domains have the same volumes, that is, $\text{det}\left(\mathcal{F}\mathcal{C}\mathcal{C}\right)=\text{vol}\left({V}_{0}\right)$, and the integrands restricted to these balls are identical, that is, ${J}_{{\text{\Omega}}^{\mathcal{F}\mathcal{C}\mathcal{C}}}{}_{{B}_{1/2}\left(0\right)}={J}_{{\text{\Omega}}^{\mathcal{H}\mathcal{C}\mathcal{P}}}{}_{{B}_{1/2}\left(0\right)}$, we can conclude that grid modules comprising $\mathcal{F}\mathcal{C}\mathcal{C}$ or $\mathcal{HCP}$like symmetries have the same FI. We also numerically calculate the trace of the average FI for a module of $\mathcal{HCP}$ grid cells and compare it to the $\mathcal{F}\mathcal{C}\mathcal{C}$ case. For bumplike tuning curves Ω, both FIs are identical (Figure 5E) as expected from the radial symmetry of Ω. As a consequence, grid cells defined by either $\mathcal{HCP}$ or $\mathcal{F}\mathcal{C}\mathcal{C}$ symmetries provide optimal resolution.
Figure 5D,E shows that the cyclic sequences (γ_{0}, γ_{1}) and (γ_{1}, γ_{0}, γ_{2}) lead to $\mathcal{HCP}$ and $\mathcal{F}\mathcal{C}\mathcal{C}$, respectively. The centers γ_{0}, γ_{1}, and γ_{2} can also be used to make a final point on packings: there are infinitely many distinct packings with the same density $\pi /(3\sqrt{2})$. They can be constructed by inequivalent words, generated by finitewalks through the triangle with letters γ_{0}, γ_{1}, and γ_{2} (Hales, 2012), with each letter representing one of three orientations for the layers. For instance, (γ_{0}, γ_{1}, γ_{0}, γ_{2}) describes another packing with the same density. All packings share one feature: around each sphere there are exactly 12 spheres, arranged in either $\mathcal{HCP}$ or $\mathcal{F}\mathcal{C}\mathcal{C}$ lattice fashion (Hales, 2012). These packings can also be used to define a grid module, because the density of phases will be uniform in all cells. Furthermore, as in the calculation of the FI for the $\mathcal{HCP}$ and $\mathcal{F}\mathcal{C}\mathcal{C}$ (Equation 18–20) only local integration was necessary, such mixed packings will have equally large, uniform FI as the pure $\mathcal{HCP}$ or $\mathcal{F}\mathcal{C}\mathcal{C}$ packings.
Only in recent years has it been proven that no other arrangement has a higher packing ratio than the $\mathcal{F}\mathcal{C}\mathcal{C}$, a problem known as Kepler's conjecture (Hales, 2005, 2012). Based on these results and our comparison of $\text{tr}{\mathit{J}}_{\mathcal{HCP}}$ and $\text{tr}{\mathit{J}}_{\mathcal{F}\mathcal{C}\mathcal{C}}$ (Figure 5E), we predict that 3D grid cells will correspond to one of these packings. While there are equally dense packings as the densest lattice in 3D, this is not the case in 2D. Thue proved that the hexagonal lattice is unique in being the densest amongst all planar packings (Thue, 1910); grid cells in 2D should possess a hexagonal lattice structure.
Discussion
Grid cells are active when an animal is near one of any number of multiple locations that correspond to the vertices of a planar hexagonal lattice (Hafting et al., 2005). We generalize the notion of a grid cell to arbitrary dimensions, such that a grid cell's stochastic activity is modulated in a spatially periodic manner within ${\mathrm{\mathbb{R}}}^{D}$. The periodicity is captured by the symmetry group of the underlying lattice $\mathcal{L}$. A grid module consists of multiple cells with equal spatial period but different spatial phases. Using information theory, we then asked which lattice offers the highest spatial resolution.
We find that the resolution of a grid module is related to the packing ratio of $\mathcal{L}$—the lattice with highest packing ratio corresponds to the grid module with highest resolution. Wellknown results from mathematics (Lagrange, 1773; Gauss, 1831; Conway and Sloane, 1992) then show that the hexagonal lattice is optimal for representing 2D, whereas the $\mathcal{F}\mathcal{C}\mathcal{C}$ lattice is optimal for 3D. In 3D, but not in 2D, there are also nonlattice packings with the same resolution as the densest lattice (Thue, 1910; Hales, 2012). A common feature of these highly symmetric optimal solutions in 3D is that each grid field is surrounded by 12 other grid fields, arranged in either $\mathcal{F}\mathcal{C}\mathcal{C}$ lattice or hexagonal close packing fashion. These solutions emerge from the set of all possible packings simply by maximizing the resolution, as we showed. However, resolution alone, as measured by the FI, does not distinguish between optimal packing solutions with different symmetries. Whether a realistic neuronal decoder, such as one based on population vector averages, favors one particular solution is an interesting open question.
As we have demonstrated, using the FI makes finding the optimal $\mathcal{L}$ analytically tractable for all dimensions D and singles out densest lattices as optimal tuning shapes under assumptions that are restrictive, but are consistent with experimental measurements (Hafting et al., 2005; Brun et al., 2008; Giocomo et al., 2011). The assumption that the tuning curves must have finite support within the fundamental domain of the lattice corresponds to grid cells being silent outside of the firing field. Indeed, our numerical simulations also showed that for broader tuning curves, grid modules with quadratic lattices can provide more FI than the hexagonal lattice (Figure 3A, θ_{2} ≈ 0.6 and θ_{1} = 1/4) and that grid cells with a $\mathcal{C}$ or $\mathcal{B}\mathcal{C}\mathcal{C}$ lattice can provide more FI than the $\mathcal{F}\mathcal{C}\mathcal{C}$ (Figure 4B, θ_{2} > 0.65 and θ_{1} = 1/4). For the planar case, Guanella and Verschure (2007) show numerically that triangular tessellations yield lower reconstruction errors under maximumlikelihood decoding than equivalently scaled square grids. Complementing this numerical analysis, Wei et al. (2013) provide a mathematical argument that hexagonal grids are optimal. To do so, they define the spatial resolution of a single module representing 2D space as the ratio R = (λ/l)^{2}, where λ is the grid scale and l is the diameter of the circle in which one can determine the animal's location with certainty. For a fixed resolution R, the number of neurons required is N = d sin(φ) R in their analysis, where d is the number of tuning curves covering each point in space. As φ ∈ [π/3, π/2] for the lattice to have unitary length (Figure 3B), minimizing N for a fixed resolution R yields φ = π/3; thus, hexagonal lattices should be optimal. Furthermore, Wei et al. show that this result also holds when considering a Bayesian decoder (Wei et al., 2013). While Wei et al. minimize N for fixed l, we minimize l (in their notation). Like Wei et al., we assume that the tuning curve Ω is isotropic (notwithstanding the fact that the lattice has preferred directions); unlike these authors, we show that there are conditions under which the firing fields should be arranged in a square lattice, and not hexagonally.
Using the FI gives a theoretical bound for the local resolution of any unbiased estimator (Lehmann, 1998). In particular, this local resolution does not take into account the ambiguity introduced by the periodic nature of the lattice. Our analysis is restricted to resolving the animal's position within the fundamental domain. For large neuron numbers N and expected peak spike counts f_{max}τ the resolution of asymptotically efficient decoders, like the maximum likelihood decoder, or the minimum mean square estimator, can indeed attain the resolution bound given by the FI (Seung and Sompolinsky, 1993; Bethge et al., 2002; Mathis et al., 2013). Thus, for these decoders and conditions the results hold. In contrast, for small neuron numbers and peak spike counts, the optimal codes could be different, just as it has been shown in the past that the optimal tuning width in these cases cannot be predicted by the FI (Bethge et al., 2002; Yaeli et al., 2010; Berens et al., 2011; Mathis et al., 2012).
Maximizing the resolution explains the observed hexagonal patterns of grid cells in 2D, and predicts an $\mathcal{F}\mathcal{C}\mathcal{C}$ lattice (or equivalent packing) for gridcell tuning curves of mammals that can freely explore the 3D nature of their environment. Quantitatively, we demonstrated that these optimal populations provide 15.5% (2D) and about 41% (3D) more resolution than grid codes with quadratic or cubic grid cells for the same number of neurons. Although better, this might not seem substantial, at least not at the level of a single grid module. However, as medial entorhinal cortex harbors a nested grid code with at least 5 and potentially 10 or more modules (Stensola et al., 2012), this translates into a much larger gain of ${1.155}^{5\text{\hspace{0.17em}}\dots \text{\hspace{0.17em}}10}\approx 2.1\text{\hspace{0.17em}}\dots \text{\hspace{0.17em}}4.2$ and ${\sqrt{2}}^{5\text{\hspace{0.17em}}\dots \text{\hspace{0.17em}}10}\approx 5.7\text{\hspace{0.17em}}\dots \text{\hspace{0.17em}}32$, respectively (Mathis et al., 2012a, 2012b). Because aligned gridcell lattices with perfectly periodic tuning curves imply that the posterior is periodic too (compare Equation 8), information from different scales would have to be combined to yield an unambiguous readout. Whether the nested scales are indeed read out in this way in the brain remains to be seen (Mathis et al., 2012a, 2012b; Wei et al., 2013). An alternative hypothesis, as first suggested by Hafting et al., is that the slight, but apparently persistent irregularities in the firing fields across space (Hafting et al., 2005; Krupic et al., 2015; Stensola et al., 2015) are being used. Future experiments should tackle this key question.
We considered perfectly periodic structures (lattices) and asked which ones provide most resolution. However, the first recordings of grid cells already showed that the fields are not exactly hexagonally arranged and that different fields might have different peak firing rates (Hafting et al., 2005). More recently, deviations from hexagonal symmetry have gained considerable attention (Derdikman et al., 2009; Krupic et al., 2013, 2015; Stensola et al., 2015). Such ‘defects’ modulate the periodicity of the tuning and consequently affect the symmetry of the likelihood function. This might imply that a potential decoder might be able to distinguish different unit cells even given a single module, which is not possible for perfectly periodic tuning curves (compare Equation 8). The local resolution, on the other hand, is robust to small, incoherent variations as the FI is a statistical average over many tuning curves with different spatial phases. At a given location, Equation 9 becomes
where $\overline{{\text{\Omega}}^{\mathcal{L}}}$ is the average of the variable tuning curves ${\text{\Omega}}_{i}^{\mathcal{L}}$. Small variations in the peak rate and grid fields will therefore average out, unless these variations are coherent across grid cells. Thus, resolution bounded by the FI is robust with respect to minor differences in peak firing rates and hexagonality. Similar arguments hold in higher dimensions.
In this study, we focused on optimizing grid modules for an isotropic and homogeneous space, which means that the resolution should be equal everywhere and in each direction of space. From a mathematical point of view, this is the most general setting, but it is certainly not the only imaginable scenario; future studies should shed light on other geometries. Indeed, the topology of natural habitats, such as burrows or caves, can be highly complicated. Higher resolution might be required at spatial locations of behavioral relevance. Neural representations of 3D space may also be composed of multiple 1D and 2D patches (Jeffery et al., 2013). However, the mere fact that these habitats involve complicated lowdimensional geometries does not imply that an animal cannot acquire a general map for the environment. Poincaré already suggested that an isotropic and homogeneous representation for space can emerge out of nonEuclidean perceptual spaces, as one can move through physical space by learning the motion group (Poincaré, 1913). An isotropic and homogeneous representation of 3D space facilitates (mental) rotations in 3D and yields local coordinates that are independent of the environment's topology. On the other hand, the efficientcoding hypothesis (Barlow, 1959; Atick, 1992; Simoncelli and Olshausen, 2001) would argue that surfacebound animals might not need to dedicate their limited neuronal resources to acquiring a full representation of space, as flying animals might have to do, so that representations of 3D space will be speciesspecific (Las and Ulanovsky, 2014). Desert ants represent space only as a projection to flat space (Wohlgemuth et al., 2001; Grah et al., 2007). Likewise, experimental evidence suggests that rats do not encode 3D space in an isotropic manner (Hayman et al., 2011), but this might be a consequence of the specific anisotropic spatial navigation tasks these rats had to perform. Data from flying bats, on the other hand, demonstrate that, at least in this species, place cells represent 3D space in a uniform and nearly isotropic manner (Yartsev and Ulanovsky, 2013). The 3D, toroidal headdirection system in bats also suggests that they have access to the full motion group (Finkelstein et al., 2014). Our theoretical analysis assumes that the same is true for bat grid cells and that they have radially symmetric firing fields. From these assumptions, we showed the grid cells' firing fields should be arranged on an $\mathcal{F}\mathcal{C}\mathcal{C}$ lattice or packed as $\mathcal{HCP}$. Interestingly, such solutions also evolve dynamically in a selforganizing network model for 3D (Stella et al., 2013; Stella and Treves, 2015) that extends a previous 2D system which exhibits hexagonal grid patterns (Kropff and Treves, 2008). Experimentally, the effect of the arena's geometry on grid cells' tuning and anchoring has also been a question of great interest (Derdikman et al., 2009; Krupic et al., 2013, 2015; Stensola et al., 2015). First, let us note that even though the environment might be finite, the gridcell representation need not be constrained by it. In particular, the firing fields are not required to be contained within the confines of the four walls of a box—experimental observations show that walls can intersect the firing fields (so that one measures only a part of the firing field). On the other hand, the borders clearly distort the hexagonal arrangement of nearby firing fields in 2D environments (Stensola et al., 2015), whereas central fields are more perfectly arranged. Deviations are also observed when only a few fields are present in the arena (Krupic et al., 2015). One might expect similar deviations in 3D, such as for bats flying in a confined space. Our mathematical results rely on symmetry arguments that do not cover nonperiodic tuning curves. Given that the resolution is related to the packing ratio of a lattice, extensions of the theory to general packings might allow one to draw on the rich field of optimal finite packings (Böröczky, 2004; Toth et al., 2004), thereby providing new hypotheses to test.
Many spatially modulated cells in rat medial entorhinal cortex have hexagonal tuning curves, but some have firing fields that are spatially periodic bands (Krupic et al., 2012). The orientation of these bands tends to coincide with one of the lattice vectors of the grid cells (as the lattices for different grid cells share a common orientation), so band cells might be a layout ‘defect’. In this context, we should point out that the lattice solutions are not globally optimal. For instance, in 2D, a higher resolution can result from two systems of nested 1D grid codes, which are aligned to the x and y axis, respectively, than from a lattice solution with the same number of neurons. The 1D cells would behave like band cells (Krupic et al., 2012). Similar counterexamples can be given in higher dimensions too. The anisotropy of the spatial tuning in grid cells of climbing rats when encoding 3D space (Hayman et al., 2011) might capitalize on this gain (Jeffery et al., 2013). Radial symmetry of the tuning curve may also be nonoptimal. For example, two sets of elliptically tuned 2D unimodal cells, with orthogonal short axes, typically outperform unimodal cells with radially symmetric tuning curves (Wilke and Eurich, 2002). Why experimentally observed place fields and other tuning curves seem to be isotropically tuned is an open question (O'Keefe and Dostrovsky, 1971; Yartsev and Ulanovsky, 2013).
Grid cells which represent the position of an animal (Hafting et al., 2005) have been discovered only recently. By comparison, in technical systems, it has been known since the 1950s that the optimal quantizers for 2D signals rely on hexagonal lattices (Gray and Neuhoff, 1998). In this context, we note that lattice codes are also ideally suited to cover spaces that involve sensory or cognitive variables other than location. In higherdimensional feature spaces, the potential gain could be enormous. For instance, the optimal eightdimensional (8D) lattice is about 16 times denser than the orthogonal 8D lattice (Conway and Sloane, 1992) and would, therefore, dramatically increase the resolution of the corresponding population code. Advances in experimental techniques, which allow one to simultaneously record from large numbers of neurons (Ahrens et al., 2013; Deisseroth and Schnitzer, 2013) and to automate stimulus delivery for dense parametric mapping (Brincat and Connor, 2004), now pave the way to search for such representations in cortex. For instance, by parameterizing 19 metric features of cartoon faces, such as hair length, iris size, or eye size, Freiwald et al. showed that faceselective cells are broadly tuned to multiple feature dimensions (Freiwald et al., 2009). Especially in higher cortical areas, such joint feature spaces should be the norm rather than the exception (Rigotti et al., 2013). While no evidence for lattice codes was found in the specific case of faceselective cells, data sets like this one will be the testbed for checking the hypothesis that other nested gridlike neural representations exist in cortex.
Materials and methods
We study population codes of neurons encoding the Ddimensional space by considering the FI J as a measure for their resolution. The population coding model, the construction to periodify a tuning shape Ω onto a lattice $\mathcal{L}$ with center density ρ, as well as the definition of the FI, are given in the main text. In this section we give further background on the methods.
Scaling of grid cells and the effect on J_{ς}
Request a detailed protocolHow is the resolution of a grid module affected by dilations? Let us assume we have a grid module with signature $\varsigma =\left(\text{\Omega},\rho ,\mathcal{L}\right)$, as defined in the main text, and that λ > 0 is a scaling factor. Then $\lambda \varsigma :=\left(\text{\Omega}\left(\lambda r\right),\rho \left(\lambda x\right),\lambda \cdot \mathcal{L}\right)$ is a grid module too, and the corresponding tuning curve ${\left(\text{\Omega}\circ \lambda \right)}_{\lambda \mathcal{L}}$ satisfies:
Thus, the tuning curve ${\left(\text{\Omega}\circ \lambda \right)}_{\lambda \mathcal{L}}$ is a scaled version of ${\text{\Omega}}_{\mathcal{L}}$. What is the relation between the FI of the initial grid module and the rescaled version? Let us fix the notation: $\rho \left(c\right)={{{\displaystyle \sum}}^{\text{}}}_{i}^{N}\delta \left(c{c}_{i}\right)$. From the definition of the population information (Equation 9), we calculate
where in the second step we used the reparameterization formula of the FI (Lehmann, 1998). This shows that the FI of a grid module scaled by a factor λ is the same as the FI of the initial grid module times 1/λ^{2}.
Population FI for Poisson noise with radially symmetric tuning
Request a detailed protocolIn the ‘Results’ section, we give a concrete example for Poisson noise and the bump function. Here we give the necessary background. Equation 13 states that
One would like to know ${\int}_{{B}_{R}\left(0\right)}\text{\hspace{0.17em}}{\mathit{J}}_{{\text{\Omega}}^{\mathcal{L}}}\left(c\right)\text{d}c$ for various tuning shapes Ω with supp(Ω) ≤ R.
Consider x ∈ L and α ∈ {1,…,D}. Then:
Together with the definition of the FI Equation 13, this yields
Note that for α ≠ β this function is odd in x. Thus, when averaging these individual contributions over a symmetric fundamental domain L: ${\int}_{L}\text{\hspace{0.17em}}{\mathit{J}}_{{\text{\Omega}}^{\mathcal{L}}}{\left(c\right)}_{\alpha \beta}}\text{d}c=0$ for α ≠ β. Thus, the diagonal entries are all identical. This also holds for any fundamental domain L when B_{R}(0) ⊂ L, because B_{R}(0) is symmetric.
For Poisson spiking $\mathcal{N}\left({\parallel c\parallel}^{2}\right)$ has a particularly simple form, namely $\mathcal{N}\left({\parallel c\parallel}^{2}\right)=1/\left({f}_{max}\tau \text{\hspace{0.17em}\Omega}\left({\parallel c\parallel}^{2}\right)\right)$. The trace of the FI matrix becomes
Thus, the trace only depends on the tuning shape Ω and its first derivative. In the main text, we use the following specific tuning shape:
This type of function is often called ‘bump function’ in topology, as it has a compact support but is everywhere smooth (i.e., infinitely times continuously differentiable). In particular, the support of this function is [0, θ_{2}), and is therefore controlled by the parameter θ_{2}. The other parameter θ_{1} controls the slope of the bump's flanks (see upper panels of Figure 3—figure supplement 1).
For the bumpfunction Ω and radius $r=\sqrt{{{{\displaystyle \sum}}^{\text{}}}_{\alpha}^{D}{x}_{\alpha}^{2}}$ the integrand for the FI is given by
The lower panels of Figure 3—figure supplement 1 depict the integrand of Equation 25, defined as $\mathcal{F}\left(r\right)$. This function shows how much FI a cell at a particular distance contribute to the location 0. By integrating the FI over the fundamental domain L for a lattice $\mathcal{L}$ one gets J_{ς}(0), that is, the average FI contributions from all neurons (as shown in Figures 3, 4, 5E).
References

Could information theory provide an ecological theory of sensory processing?Network Computation in Neural Systems 3:213–251.https://doi.org/10.1088/0954898X/3/2/009

NPL Symposium on the Mechanization of Thought Process. No. 10535–539, NPL Symposium on the Mechanization of Thought Process. No. 10, London, Her Majesty's Stationary Office.

Reassessing optimal neural population codes with neurometric functionsProceedings of the National Academy of Sciences of USA 108:4423–4428.https://doi.org/10.1073/pnas.1015904108

Optimal shortterm population coding: when Fisher information failsNeural Computation 14:2317–2351.https://doi.org/10.1162/08997660260293247

Underlying principles of visual shape selectivity in posterior inferotemporal cortexNature Neuroscience 7:880–886.https://doi.org/10.1038/nn1278

Optimal neuronal tuning for finite stimulus spacesNeural Computation 18:511–1526.https://doi.org/10.1162/neco.2006.18.7.1511

Fragmentation of grid cell maps in a multicompartment environmentNature Neuroscience 12:1325–1332.https://doi.org/10.1038/nn.2396

Multidimensional Encoding Strategy of Spiking NeuronsNeural Computation 12:1519–1529.https://doi.org/10.1162/089976600300015240

What grid cells convey about rat locationJournal of Neuroscience 28:6858–6871.https://doi.org/10.1523/JNEUROSCI.568407.2008

A face feature space in the macaque temporal lobeNature Neuroscience 12:1187–1196.https://doi.org/10.1038/nn.2363

Recension der ’Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber‘Göttingsche Gelehrte Anzeigen, July 9, pp. 1065; reprinted in J. Reine Angew. Math. 20 (1840)312–320.

QuantizationIEEE Transactions on Information Theory 44:2325–2383.https://doi.org/10.1109/18.720541

Optimum quantization and its applicationsAdvances in Mathematics 186:456–497.https://doi.org/10.1016/j.aim.2003.07.017

Prediction of the position of an animal based on populations of grid and place cells: a comparative simulation studyJournal of Integrative Neuroscience 6:433–446.https://doi.org/10.1142/S0219635207001556

A proof of the Kepler conjectureAnnals of Mathematics 162:1065–1185.https://doi.org/10.4007/annals.2005.162.1065

BookDense sphere packings: a blueprint for formal proofsCambridge: Cambridge University Press.

Anisotropic encoding of threedimensional space by place cells and grid cellsNature Neuroscience 14:1182–1188.https://doi.org/10.1038/nn.2892

Direct recordings of gridlike neuronal activity in human spatial navigationNature Neuroscience 16:1188–1190.https://doi.org/10.1038/nn.3466

Navigating in a threedimensional worldThe Behavioral and Brain Sciences 36:523–543.https://doi.org/10.1017/S0140525X12002476

How environment geometry affects grid cell symmetry and what we can learn from itPhilosophical Transactions of the Royal Society of London B Biological Sciences 369:20130188.https://doi.org/10.1098/rstb.2013.0188

Recherches d’arithmétique693–758, Nouveaux Mémoires de l'Académie Royale des Sciences et BellesLettres de Berlin, Années, 3, Reprinted in Oeuvres.

BookHippocampal neurophysiology across speciesIn: Derdikman D, Knierim JJ, editors. Space, time and memory in the hippocampal formation. Springer Vienna. pp. 431–461.

The representation of space in mammals: resolution of stochastic place and grid codesPhD thesis, LudwigMaximiliansUniveristät München.

Optimal population codes for space: grid cells outperform place cellsNeural Computation 24:2280–2317.https://doi.org/10.1162/NECO_a_00319

Resolution of nested neuronal representations can be exponential in the number of neuronsPhysical Review Letters 109:018103.https://doi.org/10.1103/PhysRevLett.109.018103

Multiscale codes in the nervous system: the problem of noise correlations and the ambiguity of periodic scalesPhysical Review E, Statistical, Nonlinear, and Soft Matter Physics 88:022713.https://doi.org/10.1103/PhysRevE.88.022713

Optimal tuning widths in population coding of periodic variablesNeural Computation 18:1555–1576.https://doi.org/10.1162/neco.2006.18.7.1555

BookThe foundations of science: science and hypothesis, the value of science, science and methodGarrison, NY: The Science Press.

Narrow versus wide tuning curves: what's best for a population code?Neural Computation 11:85–90.https://doi.org/10.1162/089976699300016818

Simple models for reading neuronal population codesProceedings of the National Academy of Sciences of USA 90:10749–10753.https://doi.org/10.1073/pnas.90.22.10749

A mathematical theory of communicationThe Bell System Technical Journal XXVII:379–423.

Natural image statistics and neural representationAnnual Review of Neuroscience 24:1193–1216.https://doi.org/10.1146/annurev.neuro.24.1.1193

Grid maps for spaceflight, anyone? They are for free!Behavioral and Brain Sciences 36:566–567.https://doi.org/10.1017/S0140525X13000575

Über die dichteste Zusammenstellung von kongruenten Kreisen in einer EbeneNorske VidenskabsSelskabets Skrifter 1:1–9.

Discrete and combinatorial mathematics seriesDiscrete and combinatorial mathematics series, 2nd edition, CRC Press.

The sense of place: grid cells in the brain and the transcendental number earXiv:1304.0031v1:20.

BookCrystallography: an introduction for earth (and other solid state) students (1st edition)Pergamon Press.

Errorbased analysis of optimal tuning functions explains phenomena observed in sensory neuronsFrontiers in Computational Neuroscience 4:130.https://doi.org/10.3389/fncom.2010.00130

Neuronal tuning: to sharpen or broaden?Neural Computation 11:75–84.https://doi.org/10.1162/089976699300016809
Decision letter

Mark S GoldmanReviewing Editor; University of California at Davis, United States
eLife posts the editorial decision letter and author response on a selection of the published articles (subject to the approval of the authors). An edited version of the letter sent to the authors after peer review is shown, indicating the substantive concerns or comments; minor concerns are not usually shown. Reviewers have the opportunity to discuss the decision before the letter is sent (see review process). Similarly, the author response typically shows only responses to the major concerns raised by the reviewers.
Thank you for sending your work entitled “Probable nature of higherdimensional symmetries underlying mammalian gridcell activity patterns” for consideration at eLife. Your article has been favorably evaluated by Eve Marder (Senior editor), Mark Goldman (guest Reviewing editor), and two reviewers.
The Reviewing editor and the reviewers discussed their comments before we reached this decision, and the Reviewing editor has assembled the following comments to help you prepare a revised submission.
In the interesting manuscript “Probable nature of higherdimensional symmetries underlying mammalian gridcell activity patterns”, Mathis et al. provide the first principled and theoreticallyrooted predictions for how the activity of grid cells might look like in 3D and, more generally, provide interesting predictions on the possible nature of other neural codes for higherdimensional stimulus spaces, such as e.g. in the prefrontal cortex. The authors do this by considering the Fisher information in a neural code consisting of firing fields that are arranged in a periodic structure in multidimensional space. Under several mathematical idealizations and assumptions, it is argued that the best arrangement for the firing fields is one that leads to maximal packing of the periodic firing fields. These predictions can be tested experimentally in gridcell recordings in flying bats.
The demonstration that FCC packing of grids is an optimal arrangement of firing fields from the coding perspective is an elegant, intriguing, and valuable result that should be of interest to many neuroscientists, biologists, and physicists. However, despite suggestions to the contrary, the work does not provide a formal argument for optimality of other close packing arrangements (such as HCP and the nonperiodic arrangements) and it is not obvious that such arrangements are equivalent from the Fisher information perspective. Furthermore, the work bears close resemblance to unpublished (but cited by the authors and publically posted) work by Balasubramanian et al.
1) The main mathematical derivations are correct and the argument in favor of maximal packing for FCC grids is simple and elegant. However, the work does not provide a formal argument for optimality of other close packing arrangements (such as HCP and the nonperiodic arrangements) and it is not clear that all the maximal packing arrangements are equivalent in terms of the Fisher information. The derivation leading to Equation 12 is precise and clear for periodic arrangements that contain one firing field per unit cell (such as the hexagonal packing in 2 dimensions or FCC), but there is a missing link between this derivation and statements about maximal close packing in more general arrangements. This means that the statements on the periodic HCP lattices, as well as the nonperiodic hybrids between FCC and HCP, are not clearly justified. This issue, and specifically whether HCP is as good as FCC (or not), must be addressed before the manuscript can be considered for publication.
2) The authors should provide more discussion of the similarities and differences of the present work from that in 2D lattices by Balasubramanian's group. The reply to reviewers should include specification of how this work provides a significant conceptual advance.
3) HCP and FCC are optimal packings for infinite 3D spaces, but, to our knowledge, there is no mathematical proof for what is the optimal sphere packing for a finitesized 3D space, such as typical laboratory arenas and rooms. The authors should discuss this “finite size problem”, and in particular, what would happen to the blobs of the grid along the walls of the arena/room. For example, can the notion of maximalFI/optimalpacking explain the distortions of 2D grids that were recently discovered by O'Keefe's group (in a trapezoid arena) and by the Mosers group (shearing of the grids along the wall)? If so, what would be the implications for 3D grid cell activity near the walls? In a similar vein, could there be a scenario (i.e. a certain ratio of room size to sphere radius) where, for a finitesized room, an optimal packing will in fact yield elongated columnar hexagons (or elongated “strings of spheres”), as was suggested by the study in rats from the Jeffery group (Hayman et al. 2011)?
4) The manuscript contains some inconsistencies and confusing statements in the discussion of the FCC and HCP lattices. The classification of lattices in 3 dimensions is well established in some areas of mathematics, physics, and engineering, so it is important to be precise and to conform with conventional nomenclature. The FCC arrangement is referred to in the manuscript as the only optimal lattice packing in 3 dimensions, and the HCP arrangement is referred to as a nonlattice arrangement because it cannot be spanned by three vectors with integer coefficients. Both of these statements disagree with the conventional classification of lattices: the FCC as well as the HCP arrangements are perfectly periodic structures.
5) The idea that the function of grid cells is to produce a nested code of position is a hypothesis, not only in three dimensional spaces but also in two dimensions, since the role of grid cells in spatial coding is far from being established experimentally, and even the structure of the grid cell code in rodents has been characterized only in very simple and small environments. This does not diminish the relevance of the theory, but we would prefer to see a larger degree of caution in the discussion on the biological reality.
Minor comments:
1) Due to the existence of global ambiguities, the ability to discriminate between very close locations (quantified by the Fisher information) might not be sufficient to achieve high resolution, as addressed in previous works by the same authors as well as other authors. It is not clear to me that local optimization of the Fisher Information is optimal from this broader perspective, even if this seems reasonable. I suggest the authors clarify or at least acknowledge this point.
2) In spaces of dimension 3 and higher it has been argued by Zhang and Sejnowsky (1998), and by Pouget, Deneve, and Ducom (1999) that it is beneficial to have wide tuning curves in order to maximize the Fisher Information. This brings into question the validity of the assumption that firing fields will have compact support in an optimal code in high dimensional spaces. In general, I thought that the assumption of compact support is perfectly legitimate (and conforms with what we know about grid cells in rodents and crawling bats), but it should be emphasized more clearly that the results rely on this assumption.
3) The diagonal elements of the Fisher information matrix are not the appropriate quantity to consider as a tight bound on the resolution. Instead, one has to consider the diagonal elements of the inverse Fisher information matrix. This is a minor issue because the inverse information matrix scales with the volume of the unit cell in agreement with the conclusions of the derivation. Nevertheless I suggest the authors address this comment by modifying the text in the subsection headed “Fisher information of a grid module with lattice L” below Equation 12.
4) The statement below Equation 4 on isotropy is confusing because the grid cell representation is not truly isotropic (there are obviously special directions in space).
5) We failed to identify in the manuscript a powerful link with cryptography or to the role of maximal close packing in coding theory (which appears there in a different context). Therefore, in my opinion, these declarations in the Introduction do not serve a meaningful or useful purpose.
https://doi.org/10.7554/eLife.05979.010Author response
1) The main mathematical derivations are correct and the argument in favor of maximal packing for FCC grids is simple and elegant. However, the work does not provide a formal argument for optimality of other close packing arrangements (such as HCP and the nonperiodic arrangements) and it is not clear that all the maximal packing arrangements are equivalent in terms of the Fisher information. The derivation leading to Equation 12 is precise and clear for periodic arrangements that contain one firing field per unit cell (such as the hexagonal packing in 2 dimensions or FCC), but there is a missing link between this derivation and statements about maximal close packing in more general arrangements. This means that the statements on the periodic HCP lattices, as well as the nonperiodic hybrids between FCC and HCP, are not clearly justified. This issue, and specifically whether HCP is as good as FCC (or not), must be addressed before the manuscript can be considered for publication.
We thank the reviewers for this comment. We clarified the argument, which shows the equivalence of the FI of these structures. As this updated part is fairly long, please refer to the subsection headed “Equally optimal nonlattice solutions for grid cell tuning” in the revised manuscript.
2) The authors should provide more discussion of the similarities and differences of the present work from that in 2D lattices by Balasubramanian's group. The reply to reviewers should include specification of how this work provides a significant conceptual advance.
We thank the reviewers for this comment. Guanella and Verschure numerically demonstrated in 2007 that the hexagonal lattice is the optimal regular lattice in planar space with respect to a maximum likelihood decoder and specific tuning curves. Wei et al. showed that a nested grid code’s resolution (defined as range / smallest scale) is highest when the grid pattern is hexagonal. They demonstrated this by analyzing the resolution for two specific decoders (winner takes it all; Bayesian) over different choices of planar lattices.
Our work advances these earlier studies in two ways:
A) We analytically derive that for any radially symmetric tuning shape (Omega in our manuscript), which satisfies the condition that grid fields are well separated, the grid module with the densest pattern provides the highest spatial resolution. We uncover conditions under which the densest arrangement is not optimal; for instance, see Figure 3A and 4B for large θ_{2}.
B) Our results hold for any number of dimensions of space, making specific predictions for putative grid cells in flying or swimming mammals. In the Ulanovsky laboratory at the Weizmann Institute, Gily Ginosar and colleagues are currently recording from the entorhinal cortex in flying bats (SfN, 2014), and preliminary results are promising.
In the revised manuscript we now more extensively discuss the prior work by Guanella/Verschure and Balasubramanian’s group. Specifically, the citation in the Introduction now reads (second paragraph):
“Theoretical and numerical studies suggest that the hexagonal lattice structure is best suited for representing such a twodimensional (2D) space [Guanella 2007, Mathis 2012 and Wei 2013].”
In the Results section (subsection headed “Optimal twodimensional grid cells”) we added:
“Our theory implies that for radially symmetric tuning curves the hexagonal lattice provides the best resolution […] Guanella and Verschure numerically compared hexagonal to other regular lattices based on maximum likelihood decoding [Guanella 2007].”
In addition, in the Discussion we write:
“[…] For the planar case, Guanella and Verschure [Guanella 2007] show numerically that triangular tessellations yield lower reconstruction errors […]; unlike these authors, we show that there are conditions under which the firing fields should be arranged in a square lattice, and not hexagonally.”
3) HCP and FCC are optimal packings for infinite 3D spaces, but, to our knowledge, there is no mathematical proof for what is the optimal sphere packing for a finitesized 3D space, such as typical laboratory arenas and rooms. The authors should discuss this “finite size problem”, and in particular, what would happen to the blobs of the grid along the walls of the arena/room. For example, can the notion of maximalFI/optimalpacking explain the distortions of 2D grids that were recently discovered by O'Keefe's group (in a trapezoid arena) and by the Mosers group (shearing of the grids along the wall)? If so, what would be the implications for 3D grid cell activity near the walls? In a similar vein, could there be a scenario (i.e. a certain ratio of room size to sphere radius) where, for a finitesized room, an optimal packing will in fact yield elongated columnar hexagons (or elongated “strings of spheres”), as was suggested by the study in rats from the Jeffery group (Hayman et al. 2011)?
We thank the reviewers for this very interesting and difficult question, but as we highlight in the updated part on grid cells defined according to packings, our theory cannot be easily extended to arbitrary packings. We think that this is beyond the scope of this study. We substantially expanded the Discussion regarding these issues and included references to some of the most important results regarding optimal packings in finite dimensional spaces that we are aware of.
Specifically, we discuss “periodicity” in the following passage:
“We considered perfectly periodic structures (lattices) and asked which ones provide most resolution. […] Thus, resolution bounded by the FI is robust with respect to minor differences in peak firing rates and hexagonality. Similar arguments hold in higher dimensions.”
We also added a section on the environment’s shape:
“Experimentally, the effect of the arena’s geometry on grid cells tuning and anchoring has also been a question of great interest […] extensions of the theory to general packings might allow one to draw on the rich field of optimal finite packings [Toth 2004, Böröczky 2004], thereby providing new hypotheses to test.”
In the context of geometry we had already discussed Hayman et al. 2011 (e.g. in the sixth paragraph of the Discussion), but additionally we highlighted this work in the context of axes being more efficient than lattices (in the Discussion): “The anisotropy of the spatial tuning in grid cells of climbing rats when encoding 3D space [Hayman 2011] might capitalize on this gain [Jeffery 2013].”
4) The manuscript contains some inconsistencies and confusing statements in the discussion of the FCC and HCP lattices. The classification of lattices in 3 dimensions is well established in some areas of mathematics, physics, and engineering, so it is important to be precise and to conform with conventional nomenclature. The FCC arrangement is referred to in the manuscript as the only optimal lattice packing in 3 dimensions, and the HCP arrangement is referred to as a nonlattice arrangement because it cannot be spanned by three vectors with integer coefficients. Both of these statements disagree with the conventional classification of lattices: the FCC as well as the HCP arrangements are perfectly periodic structures.
There are certain differences in nomenclature across fields. We used a standard reference in mathematics: “Sphere Packings, Lattices and Groups” by J.H. Conway and N.J.A. Sloane.Their nomenclature has the advantage of being unambiguous and proves to be sufficient for the study of grid cell symmetries. A number of references, including Gauss’ proof of the densest lattice, Thue’s paper and Hales’ book on the Kepler conjecture, use the standard definitions from mathematics, rather than physics.
In solid state physics and crystallography (see Whittaker’s book, for instance), a lattice is defined as the imaginary array of points in space that constitutes a motif that repeats itself. The motif for a crystal can contain multiple nodes (spheres); in principle, this motif can be highly complicated.
To clarify this distinction for the reader, we added the following part, after the definition of a grid cell (in the subsection headed “Periodic tuning curves”):
“We will not consider degenerate lattices. In this work, we follow the nomenclature from Conway & Sloane [Conway 1993]. Applied fields might differ slightly in their terminology, especially regarding naming conventions for packings, which are generalizations of lattices [Whittaker 1981, Nelson 2002]. We will address these generalizations of lattices below.”
5) The idea that the function of grid cells is to produce a nested code of position is a hypothesis, not only in three dimensional spaces but also in two dimensions, since the role of grid cells in spatial coding is far from being established experimentally, and even the structure of the grid cell code in rodents has been characterized only in very simple and small environments. This does not diminish the relevance of the theory, but we would prefer to see a larger degree of caution in the discussion on the biological reality.
We thank the reviewers for this cautionary reminder. We added such a note to the Discussion. In particular, we wrote:
“Because aligned gridcell lattices with perfectly periodic tuning curves imply that the posterior is periodic, too (compare Equation (8)), information from different scales would have to combined to yield an unambiguous readout. Whether the nested scales are indeed read out in this way in the brain remains to be seen [Wei 2013, Mathis 2012 and Mathis 2012]. An alternative hypothesis, as first suggested by Hafting et al., is that the slight, but apparently persistent irregularities in the firing fields across space [Hafting 2005, Stensola 2015 and Krupic 2015] are being used. Future experiments should tackle this key question.”
Minor comments:
1) Due to the existence of global ambiguities, the ability to discriminate between very close locations (quantified by the Fisher information) might not be sufficient to achieve high resolution, as addressed in previous works by the same authors as well as other authors. It is not clear to me that local optimization of the Fisher Information is optimal from this broader perspective, even if this seems reasonable. I suggest the authors clarify or at least acknowledge this point.
We thank the reviewers for this comment. We wanted to bring the following extended paragraph (in the Discussion section) to the attention of the reviewers, where we acknowledge this issue:
“Using the FI gives a theoretical bound for the local resolution of any unbiased estimator [Lehmann 1998]. […] for small neuron numbers and peak spike counts, the optimal codes could be different, just as it has been shown in the past that the optimal tuning width in these cases cannot be predicted by the FI [Bethge 2001, Mathis 2012, Yaeli 2010 and Berens 2011].”
2) In spaces of dimension 3 and higher it has been argued by Zhang and Sejnowsky (1998), and by Pouget, Deneve, and Ducom (1999) that it is beneficial to have wide tuning curves in order to maximize the Fisher Information. This brings into question the validity of the assumption that firing fields will have compact support in an optimal code in high dimensional spaces. In general, I thought that the assumption of compact support is perfectly legitimate (and conforms with what we know about grid cells in rodents and crawling bats), but it should be emphasized more clearly that the results rely on this assumption.
This is an important point. While the papers mentioned above consider unimodal tuning curves (that might represent place fields, for instance), we treat periodic tuning curves. The construction in Equation 7 of the text implies that as the support of the tuning curve becomes broad, the firing rate no longer dips to zero on the border ∂L of the fundamental domain. Eventually, for very broad tuning, the tuning curve becomes essentially flat and ceases to be ‘informative’, even though the support of Ω(r) remains finite.
The fractional volume of L outside B_{R}(0),
det(L) − vol(B_{R}(0))
vol(B_{R}(0))
can increase for certain L as D increases. Therefore, wider tuning curves might offer an increasing advantage in higherdimensional spaces, as they support the volume contribution to the Fisher Information from outside the ball B_{R}(0). But even for D = 2 and D = 3, satisfying the condition supp(Ω) = [0, R] with B_{R}(0) ⊂ L is not optimal with respect to the Fisher information for any tuning shape, as seen in Figure 3 and 4. In the revised manuscript, we highlight this fact (in the Discussion). In the Results section, we use a tuning curve Ω(r) that is a bump function with two parameters θ_{1} and θ_{2}, where θ_{2} is the radius of supp(Ω). If one were to optimize both parameters, one would recover the condition supp(Ω) = [0, R], where specifically R = 1/2 is the maximal inradius. The Fisher information is maximized when θ_{1} « 1, as long as the number of neurons M is large. For θ_{1} « 1, most of the Fisher information results from a radial band close to the support radius θ_{2}; indeed, in the limit θ1 → 0, the bump function becomes a step function. Author response image 1 shows that then indeed for both 2D and 3D the optimal tuning width satisfies the condition that supp(Ω) = [0, 1/2].
To take these considerations into account, we extended the paragraph about the tuning width to:
“The condition supp(Ω) = [0, R] with B_{R}(0) ⊂ L, although restrictive, is consistent with experimental observations that grid cells tend to stop firing between grid fields […] the densest lattice provides the highest resolution for any tuning shape Ω, as we just demonstrated.”
3) The diagonal elements of the Fisher information matrix are not the appropriate quantity to consider as a tight bound on the resolution. Instead, one has to consider the diagonal elements of the inverse Fisher information matrix. This is a minor issue because the inverse information matrix scales with the volume of the unit cell in agreement with the conclusions of the derivation. Nevertheless I suggest the authors address this comment by modifying the text in the subsection headed “Fisher information of a grid module with lattice L” below Equation 12.
This is absolutely correct. We changed the sentence to:
“The error for each coordinate axis is thus bounded by the same value, i.e. the inverse of the diagonal element 1/J_{ς} (0)_{ii}, for such a population.”
4) The statement below Equation 4 on isotropy is confusing because the grid cell representation is not truly isotropic (there are obviously special directions in space).
We are sorry for the confusion. With isotropy we are not referring to the tuning curves’ symmetries (which are indeed not isometric), but rather to the posterior’s. As we calculated in the manuscript, the Fisher information for any lattice (as long as the support of the tuning curve is contained in the fundamental domain and the neuron number M is sufficiently large) is a diagonal matrix with identical entries. This means that the bound given by the Fisher information is Gaussian independent of the symmetries of the lattice. Similarly, all typical errors that, for instance, a Maximum likelihood decoder makes are radially symmetrically distributed around the true value.
We added the following part to the manuscript (subsection headed “Resolution and Fisher information”):
“These two conditions assure that the population has the same resolution at any location and along any spatial axis […]but the posterior is radially symmetric around any given location for a module of such grid cells.”
5) We failed to identify in the manuscript a powerful link with cryptography or to the role of maximal close packing in coding theory (which appears there in a different context). Therefore, in my opinion, these declarations in the Introduction do not serve a meaningful or useful purpose.
We thank the reviewers for this comment. We dropped this declaration regarding the link.
We also agree with the reviewers that sphere packings and coverings appear in various forms across cryptography and coding theory. Rather than claiming the existence of a practical link, we wanted to highlight that the problem of sphere packings underlies both the design of optimal codes in coding theory, for instance for the Gaussian white noise channel (Compare to Conway / Sloane), and provides the answer to the neuronal coding problem we considered.
Thus, we would like to suggest to add the relative clause: “which also plays an important role in other coding problems and cryptography [Shannon 1948, Conway 1992 and Gray 1998]” after the following sentence in the Introduction: “Even though the firing fields between cells overlap, so as to ensure uniform coverage of space, we show how resolving the population’s Fisher information can be mapped onto the problem of packing nonoverlapping spheres, which also plays an important role in other coding problems and cryptography [Shannon 1948, Conway 1992 and Gray 1998].”
https://doi.org/10.7554/eLife.05979.011Article and author information
Author details
Funding
Bundesministerium für Bildung und Forschung (01 GQ 1004A)
 Martin B Stemmler
 Andreas VM Herz
Deutsche Forschungsgemeinschaft (MA 6176/11)
 Alexander Mathis
European Commission (PIOFGA2013622943)
 Alexander Mathis
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Acknowledgements
We thank Kenneth Blum and Mackenzie Amoroso for discussions. AM is grateful to Mackenzie Amoroso for graphics help and Ashkan Salamat for discussing the nomenclature in crystallography.
Reviewing Editor
 Mark S Goldman, University of California at Davis, United States
Version history
 Received: December 9, 2014
 Accepted: April 23, 2015
 Accepted Manuscript published: April 24, 2015 (version 1)
 Version of Record published: June 4, 2015 (version 2)
Copyright
© 2015, Mathis et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics

 3,966
 Page views

 700
 Downloads

 27
 Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading

 Computational and Systems Biology
 Physics of Living Systems
Diabetes is caused by the inability of electrically coupled, functionally heterogeneous cells within the pancreatic islet to provide adequate insulin secretion. Functional networks have been used to represent synchronized oscillatory [Ca^{2+}] dynamics and to study cell subpopulations, which play an important role in driving islet function. The mechanism by which highly synchronized cell subpopulations drive islet function is unclear. We used experimental and computational techniques to investigate the relationship between functional networks, structural (gapjunction) networks, and intrinsic cell dynamics in slow and fast oscillating islets. Highly synchronized subpopulations in the functional network were differentiated by intrinsic dynamics, including metabolic activity and K_{ATP} channel conductance, more than structural coupling. Consistent with this, intrinsic dynamics were more predictive of high synchronization in the islet functional network as compared to high levels of structural coupling. Finally, dysfunction of gap junctions, which can occur in diabetes, caused decreases in the efficiency and clustering of the functional network. These results indicate that intrinsic dynamics rather than structure drive connections in the functional network and highly synchronized subpopulations, but gap junctions are still essential for overall network efficiency. These findings deepen our interpretation of functional networks and the formation of functional subpopulations in dynamic tissues such as the islet.

 Computational and Systems Biology
 Immunology and Inflammation
T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180^{o}, while T cells in lymph nodes and villi do not exhibit this “reversing” movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.