The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin

  1. Sumanprava Giri
  2. Vasudha Aggarwal
  3. Julien Pontis
  4. Zhen Shen
  5. Arindam Chakraborty
  6. Abid Khan
  7. Craig Mizzen
  8. Kannanganattu V Prasanth
  9. Slimane Ait-Si-Ali
  10. Taekjip Ha
  11. Supriya G Prasanth  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. Centre National de la Recherche Scientifique, France

Abstract

Heterochromatic domains are enriched with repressive histone marks, including histone H3 lysine 9 methylation, written by lysine methyltransferases (KMTs). The pre-replication complex protein Origin Recognition Complex-Associated (ORCA/LRWD1) preferentially localizes to heterochromatic regions in post-replicated cells. Its role in heterochromatin organization remained elusive. ORCA recognizes methylated H3K9 marks and interacts with repressive KMTs, including G9a/GLP and Suv39H1 in a chromatin context-dependent manner. Single-molecule pull-down assays demonstrate that ORCA-ORC and multiple H3K9 KMTs exist in a single complex and that ORCA stabilizes H3K9 KMT complex. Cells lacking ORCA show alterations in chromatin architecture, with significantly reduced H3K9 di- and tri-methylation at specific chromatin sites. Changes in heterochromatin structure due to loss of ORCA affects replication timing, preferentially at the late-replicating regions. We demonstrate that ORCA acts as a scaffold for the establishment of H3K9 KMT complex and its association and activity at specific chromatin sites is crucial for the organization of heterochromatin structure.

Article and author information

Author details

  1. Sumanprava Giri

    Department of Cell and Developmental Biology,, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  2. Vasudha Aggarwal

    Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  3. Julien Pontis

    Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    No competing interests declared.
  4. Zhen Shen

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  5. Arindam Chakraborty

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  6. Abid Khan

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  7. Craig Mizzen

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  8. Kannanganattu V Prasanth

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  9. Slimane Ait-Si-Ali

    Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    No competing interests declared.
  10. Taekjip Ha

    Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    Taekjip Ha, Reviewing editor, eLife.
  11. Supriya G Prasanth

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    For correspondence
    supriyap@life.illinois.edu
    Competing interests
    No competing interests declared.

Copyright

© 2015, Giri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,119
    views
  • 775
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sumanprava Giri
  2. Vasudha Aggarwal
  3. Julien Pontis
  4. Zhen Shen
  5. Arindam Chakraborty
  6. Abid Khan
  7. Craig Mizzen
  8. Kannanganattu V Prasanth
  9. Slimane Ait-Si-Ali
  10. Taekjip Ha
  11. Supriya G Prasanth
(2015)
The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin
eLife 4:e06496.
https://doi.org/10.7554/eLife.06496

Share this article

https://doi.org/10.7554/eLife.06496

Further reading

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.