The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin

  1. Sumanprava Giri
  2. Vasudha Aggarwal
  3. Julien Pontis
  4. Zhen Shen
  5. Arindam Chakraborty
  6. Abid Khan
  7. Craig Mizzen
  8. Kannanganattu V Prasanth
  9. Slimane Ait-Si-Ali
  10. Taekjip Ha
  11. Supriya G Prasanth  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. Centre National de la Recherche Scientifique, France

Abstract

Heterochromatic domains are enriched with repressive histone marks, including histone H3 lysine 9 methylation, written by lysine methyltransferases (KMTs). The pre-replication complex protein Origin Recognition Complex-Associated (ORCA/LRWD1) preferentially localizes to heterochromatic regions in post-replicated cells. Its role in heterochromatin organization remained elusive. ORCA recognizes methylated H3K9 marks and interacts with repressive KMTs, including G9a/GLP and Suv39H1 in a chromatin context-dependent manner. Single-molecule pull-down assays demonstrate that ORCA-ORC and multiple H3K9 KMTs exist in a single complex and that ORCA stabilizes H3K9 KMT complex. Cells lacking ORCA show alterations in chromatin architecture, with significantly reduced H3K9 di- and tri-methylation at specific chromatin sites. Changes in heterochromatin structure due to loss of ORCA affects replication timing, preferentially at the late-replicating regions. We demonstrate that ORCA acts as a scaffold for the establishment of H3K9 KMT complex and its association and activity at specific chromatin sites is crucial for the organization of heterochromatin structure.

Article and author information

Author details

  1. Sumanprava Giri

    Department of Cell and Developmental Biology,, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  2. Vasudha Aggarwal

    Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  3. Julien Pontis

    Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    No competing interests declared.
  4. Zhen Shen

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  5. Arindam Chakraborty

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  6. Abid Khan

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  7. Craig Mizzen

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  8. Kannanganattu V Prasanth

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    No competing interests declared.
  9. Slimane Ait-Si-Ali

    Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Epigénétique et Destin Cellulaire, UMR7216, Centre National de la Recherche Scientifique, Paris, France
    Competing interests
    No competing interests declared.
  10. Taekjip Ha

    Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    Competing interests
    Taekjip Ha, Reviewing editor, eLife.
  11. Supriya G Prasanth

    Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Champaign, United States
    For correspondence
    supriyap@life.illinois.edu
    Competing interests
    No competing interests declared.

Copyright

© 2015, Giri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,149
    views
  • 777
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sumanprava Giri
  2. Vasudha Aggarwal
  3. Julien Pontis
  4. Zhen Shen
  5. Arindam Chakraborty
  6. Abid Khan
  7. Craig Mizzen
  8. Kannanganattu V Prasanth
  9. Slimane Ait-Si-Ali
  10. Taekjip Ha
  11. Supriya G Prasanth
(2015)
The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin
eLife 4:e06496.
https://doi.org/10.7554/eLife.06496

Share this article

https://doi.org/10.7554/eLife.06496

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.