ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins

  1. Anna Caballe
  2. Dawn M Wenzel
  3. Monica Agromayor
  4. Steven L Alam
  5. Jack J Skalicky
  6. Magdalena Kloc
  7. Jeremy G Carlton
  8. Leticia Labrador
  9. Wesley I Sundquist
  10. Juan Martin-Serrano  Is a corresponding author
  1. King's College London School of Medicine, United Kingdom
  2. University of Utah School of Medicine, United States

Abstract

The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. Here we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains and thereby delays abscission in response to lagging chromosomes, nuclear pore defects and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations.

Article and author information

Author details

  1. Anna Caballe

    Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Dawn M Wenzel

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  3. Monica Agromayor

    Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Steven L Alam

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Jack J Skalicky

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  6. Magdalena Kloc

    Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  7. Jeremy G Carlton

    Division of Cancer Studies, King's College London School of Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  8. Leticia Labrador

    Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
    Competing interests
    No competing interests declared.
  9. Wesley I Sundquist

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    Wesley I Sundquist, Reviewing editor, eLife.
  10. Juan Martin-Serrano

    Department of Infectious Diseases, King's College London School of Medicine, London, United Kingdom
    For correspondence
    juan.martin_serrano@kcl.ac.uk
    Competing interests
    No competing interests declared.

Copyright

© 2015, Caballe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,980
    views
  • 1,016
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Caballe
  2. Dawn M Wenzel
  3. Monica Agromayor
  4. Steven L Alam
  5. Jack J Skalicky
  6. Magdalena Kloc
  7. Jeremy G Carlton
  8. Leticia Labrador
  9. Wesley I Sundquist
  10. Juan Martin-Serrano
(2015)
ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins
eLife 4:e06547.
https://doi.org/10.7554/eLife.06547

Share this article

https://doi.org/10.7554/eLife.06547

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.