Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense

  1. Claudia Castillo-González
  2. Xiuying Liu
  3. Changjun Huang
  4. Changjiang Zhao
  5. Zeyang Ma
  6. Tao Hu
  7. Feng Sun
  8. Yijun Zhou
  9. Xiu-Jie Wang
  10. Xueping Zhou
  11. Xiuren Zhang  Is a corresponding author
  1. Texas A&M University, United States
  2. Jiangsu Academy of Agricultural Sciences, China
  3. Chinese Academy of Sciences, China
  4. Zhejiang University, China

Abstract

Transcriptional gene silencing (TGS) can serve as an innate immunity against invading DNA viruses throughout Eukaryotes. Geminivirus code for TrAP protein to suppress the TGS pathway. Here we identified an Arabidopsis H3K9me2 histone methyltransferase, Su(var)3-9 homolog 4 (SUVH4/KYP), as a bona fide cellular target of TrAP. TrAP interacts with the catalytic domain of KYP and inhibits its activity in vitro. TrAP elicits developmental anomalies phenocopying several TGS mutants, reduces the repressive H3K9me2 mark and CHH DNA methylation, and reactivates numerous endogenous KYP-repressed loci in vivo. Moreover, KYP binds to the viral chromatin, and controls its methylation to combat virus infection. Notably, kyp mutants support systemic infection of TrAP-deficient Geminivirus. We conclude that TrAP attenuates the TGS of the viral chromatin by inhibiting KYP activity to evade host surveillance. These findings provide new insight on the molecular arms race between host antiviral defense and virus counter defense at an epigenetic level.

Article and author information

Author details

  1. Claudia Castillo-González

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiuying Liu

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Changjun Huang

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Changjiang Zhao

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zeyang Ma

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tao Hu

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Feng Sun

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yijun Zhou

    Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiu-Jie Wang

    State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Xueping Zhou

    Biotechnology Institute, College of Agriculture & Biotechnology, Zhejiang University, Zhejiang, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Xiuren Zhang

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    For correspondence
    xiuren.zhang@tamu.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Castillo-González et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,264
    views
  • 1,046
    downloads
  • 93
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claudia Castillo-González
  2. Xiuying Liu
  3. Changjun Huang
  4. Changjiang Zhao
  5. Zeyang Ma
  6. Tao Hu
  7. Feng Sun
  8. Yijun Zhou
  9. Xiu-Jie Wang
  10. Xueping Zhou
  11. Xiuren Zhang
(2015)
Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense
eLife 4:e06671.
https://doi.org/10.7554/eLife.06671

Share this article

https://doi.org/10.7554/eLife.06671

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.