Tuning the speed-accuracy trade-off to maximize reward rate in multisensory decision-making

  1. Jan Drugowitsch  Is a corresponding author
  2. Gregory C DeAngelis
  3. Dora E Angelaki
  4. Alexandre Pouget
  1. University of Rochester, United States
  2. Baylor College of Medicine, United States

Abstract

For decisions made under time pressure, effective decision making based on uncertain or ambiguous evidence requires efficient accumulation of evidence over time, as well as appropriately balancing speed and accuracy, known as the speed/accuracy trade-off. For simple unimodal stimuli, previous studies have shown that human subjects set their speed/accuracy trade-off to maximize reward rate. We extend this analysis to situations in which information is provided by multiple sensory modalities. Analyzing previously collected data (J. Drugowitsch, DeAngelis, Klier, Angelaki, & Pouget, 2014), we show that human subjects adjust their speed/accuracy trade-off to produce near-optimal reward rates. This trade-off can change rapidly across trials according to the sensory modalities involved, suggesting that it is represented by neural population codes rather than implemented by slow neuronal mechanisms such as gradual changes in synaptic weights. Furthermore, we show that deviations from the optimal speed/accuracy trade-off can be explained by assuming an incomplete gradient-based learning of these trade-offs.

Article and author information

Author details

  1. Jan Drugowitsch

    Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
    For correspondence
    jdrugo@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Gregory C DeAngelis

    Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Dora E Angelaki

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexandre Pouget

    Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Timothy Behrens, Oxford University, United Kingdom

Ethics

Human subjects: Human subjects: Informed consent was obtained from all participants and all procedures were reviewed and approved by the Washington University Office of Human Research Protections (OHRP), Institutional Review Board (IRB; IRB ID# 201109183). Consent to publish was not obtained in writing, as it was not required by the IRB, but all subjects were recruited for this purpose and approved verbally. Of the initial seven subjects, three participated in a follow-up experiment roughly 2 years after the initial data collection. Procedures for the follow-up experiment were approved by the Institutional Review Board for Human Subject Research for Baylor College of Medicine and Affiliated Hospitals (BCM IRB, ID# H-29411) and informed consent and consent to publish was given again by all three subjects

Version history

  1. Received: January 29, 2015
  2. Accepted: June 18, 2015
  3. Accepted Manuscript published: June 19, 2015 (version 1)
  4. Version of Record published: July 1, 2015 (version 2)

Copyright

© 2015, Drugowitsch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,351
    views
  • 513
    downloads
  • 49
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jan Drugowitsch
  2. Gregory C DeAngelis
  3. Dora E Angelaki
  4. Alexandre Pouget
(2015)
Tuning the speed-accuracy trade-off to maximize reward rate in multisensory decision-making
eLife 4:e06678.
https://doi.org/10.7554/eLife.06678

Share this article

https://doi.org/10.7554/eLife.06678

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.

    1. Computational and Systems Biology
    Qianmu Yuan, Chong Tian, Yuedong Yang
    Tools and Resources

    Revealing protein binding sites with other molecules, such as nucleic acids, peptides, or small ligands, sheds light on disease mechanism elucidation and novel drug design. With the explosive growth of proteins in sequence databases, how to accurately and efficiently identify these binding sites from sequences becomes essential. However, current methods mostly rely on expensive multiple sequence alignments or experimental protein structures, limiting their genome-scale applications. Besides, these methods haven’t fully explored the geometry of the protein structures. Here, we propose GPSite, a multi-task network for simultaneously predicting binding residues of DNA, RNA, peptide, protein, ATP, HEM, and metal ions on proteins. GPSite was trained on informative sequence embeddings and predicted structures from protein language models, while comprehensively extracting residual and relational geometric contexts in an end-to-end manner. Experiments demonstrate that GPSite substantially surpasses state-of-the-art sequence-based and structure-based approaches on various benchmark datasets, even when the structures are not well-predicted. The low computational cost of GPSite enables rapid genome-scale binding residue annotations for over 568,000 sequences, providing opportunities to unveil unexplored associations of binding sites with molecular functions, biological processes, and genetic variants. The GPSite webserver and annotation database can be freely accessed at https://bio-web1.nscc-gz.cn/app/GPSite.