H2A histone-fold and DNA elements in nucleosome activate SWR1-mediated H2A.Z replacement

  1. Anand Ranjan
  2. Feng Wang
  3. Gaku Mizuguchi
  4. Debbie Wei
  5. Yingzi Huang
  6. Carl Wu  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. National Institutes of Health, United States

Abstract

The histone variant H2A.Z is a universal mark of gene promoters, enhancers and regulatory elements in eukaryotic chromatin. The chromatin remodeler SWR1 mediates site-specific incorporation of H2A.Z by a multi-step histone replacement reaction, evicting histone H2A-H2B from the canonical nucleosome and depositing the H2A.Z-H2B dimer. Binding of both substrates-the canonical nucleosome and the H2A.Z-H2B dimer, is essential for activation of SWR1. We found that SWR1 primarily recognizes key residues within the α2 helix in the histone-fold of nucleosomal histone H2A, a region not previously known to influence remodeler activity. Moreover, SWR1 interacts preferentially with nucleosomal DNA at superhelix location 2 on the nucleosome face distal to its linker-binding site. Our findings provide new molecular insights on recognition of the canonical nucleosome by a chromatin remodeler, and have implications for ATP-driven mechanisms of histone eviction and deposition.

Article and author information

Author details

  1. Anand Ranjan

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Feng Wang

    Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gaku Mizuguchi

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Debbie Wei

    Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yingzi Huang

    Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Carl Wu

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    wuc@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,224
    views
  • 893
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anand Ranjan
  2. Feng Wang
  3. Gaku Mizuguchi
  4. Debbie Wei
  5. Yingzi Huang
  6. Carl Wu
(2015)
H2A histone-fold and DNA elements in nucleosome activate SWR1-mediated H2A.Z replacement
eLife 4:e06845.
https://doi.org/10.7554/eLife.06845

Share this article

https://doi.org/10.7554/eLife.06845