Single-fluorophore membrane transport activity sensors with dual-emission read-out

  1. Cindy Ast
  2. Roberto De Michele
  3. Michael U Kumke
  4. Wolf B Frommer  Is a corresponding author
  1. Carnegie Institution for Science, United States
  2. Italian National Research Council, Italy
  3. University of Potsdam, Germany

Abstract

We recently described a series of genetically encoded, single-fluorophore-based sensors, termed AmTrac and MepTrac, which monitor membrane transporter activity in vivo (De Michele et al., 2013). However, being intensiometric, AmTrac and Meptrac are limited in their use for quantitative studies. Here, we characterized the photophysical properties (steady-state and time-resolved fluorescence spectroscopy as well as anisotropy decay analysis) of different AmTrac sensors with diverging fluorescence properties in order to generate improved, ratiometric sensors. By replacing key amino acid residues in AmTrac we constructed a set of dual-emission AmTrac sensors named deAmTracs. deAmTracs show opposing changes of blue and green emission with almost doubled emission ratio upon ammonium addition. The response ratio of the deAmTracs correlated with transport activity in mutants with altered capacity. Our results suggest that partial disruption of distance-dependent excited-state proton transfer (ESPT) is important for the successful generation of single-fluorophore-based dual-emission sensors.

Article and author information

Author details

  1. Cindy Ast

    Department of Plant Biology, Carnegie Institution for Science, Stanford California, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Roberto De Michele

    Institute of Biosciences and Bioresources, Italian National Research Council, Palermo, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael U Kumke

    Department of Physical Chemistry, Institute of Chemistry, University of Potsdam, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Wolf B Frommer

    Department of Plant Biology, Carnegie Institution for Science, Stanford California, United States
    For correspondence
    wfrommer@carnegiescience.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Ast et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,910
    views
  • 402
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cindy Ast
  2. Roberto De Michele
  3. Michael U Kumke
  4. Wolf B Frommer
(2015)
Single-fluorophore membrane transport activity sensors with dual-emission read-out
eLife 4:e07113.
https://doi.org/10.7554/eLife.07113

Share this article

https://doi.org/10.7554/eLife.07113

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sasha L Evans, Bethany A Haynes ... Rivka L Isaacson
    Insight

    Nature has inspired the design of improved inhibitors for cancer-causing proteins.

    1. Structural Biology and Molecular Biophysics
    Gabriel E Jara, Francesco Pontiggia ... Dorothee Kern
    Research Article

    Transition-state (TS) theory has provided the theoretical framework to explain the enormous rate accelerations of chemical reactions by enzymes. Given that proteins display large ensembles of conformations, unique TSs would pose a huge entropic bottleneck for enzyme catalysis. To shed light on this question, we studied the nature of the enzymatic TS for the phosphoryl-transfer step in adenylate kinase by quantum-mechanics/molecular-mechanics calculations. We find a structurally wide set of energetically equivalent configurations that lie along the reaction coordinate and hence a broad transition-state ensemble (TSE). A conformationally delocalized ensemble, including asymmetric TSs, is rooted in the macroscopic nature of the enzyme. The computational results are buttressed by enzyme kinetics experiments that confirm the decrease of the entropy of activation predicted from such wide TSE. TSEs as a key for efficient enzyme catalysis further boosts a unifying concept for protein folding and conformational transitions underlying protein function.