1. Microbiology and Infectious Disease
Download icon

Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division

  1. Andrew N Gray
  2. Alexander J F Egan
  3. Inge L van't Veer
  4. Jolanda Verheul
  5. Alexandre Colavin
  6. Alexandra Koumoutsi
  7. Jacob Biboy
  8. Maarten A F Altelaar
  9. Mirjam J Damen
  10. Kerwyn Casey Huang
  11. Jean-Pierre Simorre
  12. Eefjan Breukink
  13. Tanneke den Blaauwen
  14. Athanasios Typas
  15. Carol A Gross  Is a corresponding author
  16. Waldemar Vollmer
  1. University of California, San Francisco, United States
  2. Newcastle University, United Kingdom
  3. University of Utrecht, Netherlands
  4. University of Amsterdam, Netherlands
  5. Stanford University, United States
  6. European Molecular Biology Laboratory Heidelberg, Germany
  7. Université Grenoble Alpes, France
Research Article
  • Cited 101
  • Views 5,716
  • Annotations
Cite this article as: eLife 2015;4:e07118 doi: 10.7554/eLife.07118

Abstract

To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane (IM), peptidoglycan (PG) and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (<u><b>C</b></u>oordinator of <u><b>P</b></u>G synthesis and <u><b>O</b></u>M constriction, associated with PBP1<u><b>B</b></u>). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division.

Article and author information

Author details

  1. Andrew N Gray

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexander J F Egan

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Inge L van't Veer

    Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Jolanda Verheul

    Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexandre Colavin

    Biophysics Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandra Koumoutsi

    Genome Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Jacob Biboy

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Maarten A F Altelaar

    Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Mirjam J Damen

    Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Kerwyn Casey Huang

    Biophysics Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jean-Pierre Simorre

    Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Eefjan Breukink

    Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Tanneke den Blaauwen

    Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  14. Athanasios Typas

    Genome Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Carol A Gross

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    For correspondence
    cgrossucsf@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  16. Waldemar Vollmer

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Publication history

  1. Received: February 20, 2015
  2. Accepted: May 6, 2015
  3. Accepted Manuscript published: May 7, 2015 (version 1)
  4. Accepted Manuscript updated: May 8, 2015 (version 2)
  5. Version of Record published: June 8, 2015 (version 3)

Copyright

© 2015, Gray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,716
    Page views
  • 1,503
    Downloads
  • 101
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Medicine
    2. Microbiology and Infectious Disease
    Nguyen Thi Thuy Ngan et al.
    Research Article Updated

    Background:

    Cryptococcal meningitis has high mortality. Flucytosine is a key treatment but is expensive and rarely available. The anticancer agent tamoxifen has synergistic anti-cryptococcal activity with amphotericin in vitro. It is off-patent, cheap, and widely available. We performed a trial to determine its therapeutic potential.

    Methods:

    Open label randomized controlled trial. Participants received standard care – amphotericin combined with fluconazole for the first 2 weeks – or standard care plus tamoxifen 300 mg/day. The primary end point was Early Fungicidal Activity (EFA) – the rate of yeast clearance from cerebrospinal fluid (CSF). Trial registration https://clinicaltrials.gov/ct2/show/NCT03112031.

    Results:

    Fifty patients were enrolled (median age 34 years, 35 male). Tamoxifen had no effect on EFA (−0.48log10 colony-forming units/mL/CSF control arm versus −0.49 tamoxifen arm, difference −0.005log10CFU/ml/day, 95% CI: −0.16, 0.15, p=0.95). Tamoxifen caused QTc prolongation.

    Conclusions:

    High-dose tamoxifen does not increase the clearance rate of Cryptococcus from CSF. Novel, affordable therapies are needed.

    Funding:

    The trial was funded through the Wellcome Trust Asia Programme Vietnam Core Grant 106680 and a Wellcome Trust Intermediate Fellowship to JND grant number WT097147MA.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Thomas Hackl et al.
    Research Article

    Virophages can parasitize giant DNA viruses and may provide adaptive anti-giant virus defense in unicellular eukaryotes. Under laboratory conditions, the virophage mavirus integrates into the nuclear genome of the marine flagellate Cafeteria burkhardae and reactivates upon superinfection with the giant virus CroV. In natural systems, however, the prevalence and diversity of host-virophage associations has not been systematically explored. Here, we report dozens of integrated virophages in four globally sampled C. burkhardae strains that constitute up to 2% of their host genomes. These endogenous mavirus-like elements (EMALEs) separated into eight types based on GC-content, nucleotide similarity, and coding potential and carried diverse promoter motifs implicating interactions with different giant viruses. Between host strains, some EMALE insertion loci were conserved indicating ancient integration events, whereas the majority of insertion sites were unique to a given host strain suggesting that EMALEs are active and mobile. Furthermore, we uncovered a unique association between EMALEs and a group of tyrosine recombinase retrotransposons, revealing yet another layer of parasitism in this nested microbial system. Our findings show that virophages are widespread and dynamic in wild Cafeteria populations, supporting their potential role in antiviral defense in protists.