Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division

  1. Andrew N Gray
  2. Alexander J F Egan
  3. Inge L van't Veer
  4. Jolanda Verheul
  5. Alexandre Colavin
  6. Alexandra Koumoutsi
  7. Jacob Biboy
  8. Maarten A F Altelaar
  9. Mirjam J Damen
  10. Kerwyn Casey Huang
  11. Jean-Pierre Simorre
  12. Eefjan Breukink
  13. Tanneke den Blaauwen
  14. Athanasios Typas
  15. Carol A Gross  Is a corresponding author
  16. Waldemar Vollmer
  1. University of California, San Francisco, United States
  2. Newcastle University, United Kingdom
  3. University of Utrecht, Netherlands
  4. University of Amsterdam, Netherlands
  5. Stanford University, United States
  6. European Molecular Biology Laboratory Heidelberg, Germany
  7. Université Grenoble Alpes, France

Abstract

To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane (IM), peptidoglycan (PG) and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (<u><b>C</b></u>oordinator of <u><b>P</b></u>G synthesis and <u><b>O</b></u>M constriction, associated with PBP1<u><b>B</b></u>). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division.

Article and author information

Author details

  1. Andrew N Gray

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexander J F Egan

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Inge L van't Veer

    Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Jolanda Verheul

    Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexandre Colavin

    Biophysics Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandra Koumoutsi

    Genome Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Jacob Biboy

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Maarten A F Altelaar

    Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Mirjam J Damen

    Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Kerwyn Casey Huang

    Biophysics Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jean-Pierre Simorre

    Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Eefjan Breukink

    Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Tanneke den Blaauwen

    Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  14. Athanasios Typas

    Genome Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Carol A Gross

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    For correspondence
    cgrossucsf@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  16. Waldemar Vollmer

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Gray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,915
    views
  • 1,680
    downloads
  • 153
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew N Gray
  2. Alexander J F Egan
  3. Inge L van't Veer
  4. Jolanda Verheul
  5. Alexandre Colavin
  6. Alexandra Koumoutsi
  7. Jacob Biboy
  8. Maarten A F Altelaar
  9. Mirjam J Damen
  10. Kerwyn Casey Huang
  11. Jean-Pierre Simorre
  12. Eefjan Breukink
  13. Tanneke den Blaauwen
  14. Athanasios Typas
  15. Carol A Gross
  16. Waldemar Vollmer
(2015)
Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division
eLife 4:e07118.
https://doi.org/10.7554/eLife.07118

Share this article

https://doi.org/10.7554/eLife.07118

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.