1. Microbiology and Infectious Disease
Download icon

Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division

  1. Andrew N Gray
  2. Alexander J F Egan
  3. Inge L van't Veer
  4. Jolanda Verheul
  5. Alexandre Colavin
  6. Alexandra Koumoutsi
  7. Jacob Biboy
  8. Maarten A F Altelaar
  9. Mirjam J Damen
  10. Kerwyn Casey Huang
  11. Jean-Pierre Simorre
  12. Eefjan Breukink
  13. Tanneke den Blaauwen
  14. Athanasios Typas
  15. Carol A Gross  Is a corresponding author
  16. Waldemar Vollmer
  1. University of California, San Francisco, United States
  2. Newcastle University, United Kingdom
  3. University of Utrecht, Netherlands
  4. University of Amsterdam, Netherlands
  5. Stanford University, United States
  6. European Molecular Biology Laboratory Heidelberg, Germany
  7. Université Grenoble Alpes, France
Research Article
  • Cited 84
  • Views 5,282
  • Annotations
Cite this article as: eLife 2015;4:e07118 doi: 10.7554/eLife.07118

Abstract

To maintain cellular structure and integrity during division, Gram-negative bacteria must carefully coordinate constriction of a tripartite cell envelope of inner membrane (IM), peptidoglycan (PG) and outer membrane (OM). It has remained enigmatic how this is accomplished. Here, we show that envelope machines facilitating septal PG synthesis (PBP1B-LpoB complex) and OM constriction (Tol system) are physically and functionally coordinated via YbgF, renamed CpoB (Coordinator of PG synthesis and OM constriction, associated with PBP1B). CpoB localizes to the septum concurrent with PBP1B-LpoB and Tol at the onset of constriction, interacts with both complexes, and regulates PBP1B activity in response to Tol energy state. This coordination links PG synthesis with OM invagination and imparts a unique mode of bifunctional PG synthase regulation by selectively modulating PBP1B cross-linking activity. Coordination of the PBP1B and Tol machines by CpoB contributes to effective PBP1B function in vivo and maintenance of cell envelope integrity during division.

Article and author information

Author details

  1. Andrew N Gray

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexander J F Egan

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Inge L van't Veer

    Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Jolanda Verheul

    Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexandre Colavin

    Biophysics Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandra Koumoutsi

    Genome Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Jacob Biboy

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Maarten A F Altelaar

    Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Mirjam J Damen

    Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Kerwyn Casey Huang

    Biophysics Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Jean-Pierre Simorre

    Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Eefjan Breukink

    Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, University of Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Tanneke den Blaauwen

    Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  14. Athanasios Typas

    Genome Biology Unit, European Molecular Biology Laboratory Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Carol A Gross

    Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
    For correspondence
    cgrossucsf@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  16. Waldemar Vollmer

    Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Publication history

  1. Received: February 20, 2015
  2. Accepted: May 6, 2015
  3. Accepted Manuscript published: May 7, 2015 (version 1)
  4. Accepted Manuscript updated: May 8, 2015 (version 2)
  5. Version of Record published: June 8, 2015 (version 3)

Copyright

© 2015, Gray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,282
    Page views
  • 1,440
    Downloads
  • 84
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Pradyot Bhattacharya et al.
    Research Article Updated

    HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Jeannette L Tenthorey et al.
    Research Article

    Host antiviral proteins engage in evolutionary arms races with viruses, in which both sides rapidly evolve at interaction interfaces to gain or evade immune defense. For example, primate TRIM5α uses its rapidly evolving ‘v1’ loop to bind retroviral capsids, and single mutations in this loop can dramatically improve retroviral restriction. However, it is unknown whether such gains of viral restriction are rare, or if they incur loss of pre-existing function against other viruses. Using deep mutational scanning, we comprehensively measured how single mutations in the TRIM5α v1 loop affect restriction of divergent retroviruses. Unexpectedly, we found that the majority of mutations increase weak antiviral function. Moreover, most random mutations do not disrupt potent viral restriction, even when it is newly acquired via a single adaptive substitution. Our results indicate that TRIM5α’s adaptive landscape is remarkably broad and mutationally resilient, maximizing its chances of success in evolutionary arms races with retroviruses.