Characterisation of the finch embryo supports evolutionary conservation of the naïve stage of development in amniotes

Abstract

Innate pluripotency of mouse embryos transits from naïve to primed state as the inner cell mass (ICM) differentiates into epiblast. In vitro, their counterparts are embryonic (ESCs) and epiblast stem cells (EpiSCs) respectively. Activation of the FGF signalling cascade results in mouse ESCs differentiating into mEpiSCs, indicative of its requirement in the shift between these states. However, only mouse ESCs correspond to the naïve state; ESCs from other mammals and from chick show primed state characteristics. Thus, the significance of the naïve state is unclear. Here, we use zebra finch as a model for comparative ESC studies. The finch blastoderm has mESC-like properties, while chick blastoderm exhibits EpiSC features. In the absence of FGF signalling, finch cells retained expression of pluripotent markers, which were lost in cells from chick or aged finch epiblasts. Our data suggest that the naïve state of pluripotency is evolutionarily conserved among amniotes.

Article and author information

Author details

  1. Siu-Shan Mak

    Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Cantas Alev

    Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Hiroki Nagai

    Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna Wrabel

    Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yoko Matsuoka

    Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Akira Honda

    Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Guojun Sheng

    Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Raj K Ladher

    Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
    For correspondence
    rajladher@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Mak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,641
    views
  • 517
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siu-Shan Mak
  2. Cantas Alev
  3. Hiroki Nagai
  4. Anna Wrabel
  5. Yoko Matsuoka
  6. Akira Honda
  7. Guojun Sheng
  8. Raj K Ladher
(2015)
Characterisation of the finch embryo supports evolutionary conservation of the naïve stage of development in amniotes
eLife 4:e07178.
https://doi.org/10.7554/eLife.07178

Share this article

https://doi.org/10.7554/eLife.07178

Further reading

    1. Developmental Biology
    Maiko Kawasaki, Katsushige Kawasaki ... Atsushi Ohazama
    Research Article

    Dysfunction of primary cilia leads to genetic disorder, ciliopathies, which shows various malformations in many vital organs such as brain. Multiple tongue deformities including cleft, hamartoma, and ankyloglossia are also seen in ciliopathies, which yield difficulties in fundamental functions such as mastication and vocalization. Here, we found these tongue anomalies in mice with mutation of ciliary protein. Abnormal cranial neural crest-derived cells (CNCC) failed to evoke Hh signal for differentiation of mesoderm-derived cells into myoblasts, which resulted in abnormal differentiation of mesoderm-derived cells into adipocytes. The ectopic adipose subsequently arrested tongue swelling formation. Ankyloglossia was caused by aberrant cell migration due to lack of non-canonical Wnt signaling. In addition to ciliopathies, these tongue anomalies are often observed as non-familial condition in human. We found that these tongue deformities could be reproduced in wild-type mice by simple mechanical manipulations to disturb cellular processes which were disrupted in mutant mice. Our results provide hints for possible future treatment in ciliopathies.

    1. Developmental Biology
    2. Genetics and Genomics
    Morgane Djebar, Isabelle Anselme ... Christine Vesque
    Research Article

    Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the rpgrip1l gene encoding a ciliary transition zone protein. rpgrip1l mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles. Taking advantage of this asynchrony, we found that curvature onset was preceded by ventricle dilations and was concomitant to the perturbation of Reissner fiber polymerization and to the loss of multiciliated tufts around the subcommissural organ. Rescue experiments showed that Rpgrip1l was exclusively required in foxj1a-expressing cells to prevent axis curvature. Genetic interactions investigations ruled out Urp1/2 levels as a main driver of scoliosis in rpgrip1 mutants. Transcriptomic and proteomic studies identified neuroinflammation associated with increased Annexin levels as a potential mechanism of scoliosis development in rpgrip1l juveniles. Investigating the cell types associated with annexin2 over-expression, we uncovered astrogliosis, arising in glial cells surrounding the diencephalic and rhombencephalic ventricles just before scoliosis onset and increasing with time in severity. Anti-inflammatory drug treatment reduced scoliosis penetrance and severity and this correlated with reduced astrogliosis and macrophage/microglia enrichment around the diencephalic ventricle. Mutation of the cep290 gene encoding another transition zone protein also associated astrogliosis with scoliosis. Thus, we propose astrogliosis induced by perturbed ventricular homeostasis and associated with immune cell activation as a novel pathogenic mechanism of zebrafish scoliosis caused by cilia dysfunction.