Characterisation of the finch embryo supports evolutionary conservation of the naïve stage of development in amniotes

Abstract

Innate pluripotency of mouse embryos transits from naïve to primed state as the inner cell mass (ICM) differentiates into epiblast. In vitro, their counterparts are embryonic (ESCs) and epiblast stem cells (EpiSCs) respectively. Activation of the FGF signalling cascade results in mouse ESCs differentiating into mEpiSCs, indicative of its requirement in the shift between these states. However, only mouse ESCs correspond to the naïve state; ESCs from other mammals and from chick show primed state characteristics. Thus, the significance of the naïve state is unclear. Here, we use zebra finch as a model for comparative ESC studies. The finch blastoderm has mESC-like properties, while chick blastoderm exhibits EpiSC features. In the absence of FGF signalling, finch cells retained expression of pluripotent markers, which were lost in cells from chick or aged finch epiblasts. Our data suggest that the naïve state of pluripotency is evolutionarily conserved among amniotes.

Article and author information

Author details

  1. Siu-Shan Mak

    Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Cantas Alev

    Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Hiroki Nagai

    Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna Wrabel

    Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yoko Matsuoka

    Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Akira Honda

    Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Guojun Sheng

    Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Raj K Ladher

    Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
    For correspondence
    rajladher@ncbs.res.in
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Mak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,693
    views
  • 525
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siu-Shan Mak
  2. Cantas Alev
  3. Hiroki Nagai
  4. Anna Wrabel
  5. Yoko Matsuoka
  6. Akira Honda
  7. Guojun Sheng
  8. Raj K Ladher
(2015)
Characterisation of the finch embryo supports evolutionary conservation of the naïve stage of development in amniotes
eLife 4:e07178.
https://doi.org/10.7554/eLife.07178

Share this article

https://doi.org/10.7554/eLife.07178