Examining kinesin processivity within a general gating framework

  1. Johan O L Andreasson
  2. Bojan Milic
  3. Geng-Yuan Chen
  4. Nicholas R Guydosh
  5. William O Hancock
  6. Steven M Block  Is a corresponding author
  1. Stanford University, United States
  2. Pennsylvania State University, United States
  3. Howard Hughes Medical Institute, Johns Hopkins University, United States

Abstract

Kinesin-1 is a dimeric motor that transports cargo along microtubules, taking 8.2-nm steps in a hand-over-hand fashion. The ATP hydrolysis cycles of its two heads are maintained out of phase by a series of gating mechanisms, which lead to processive runs averaging ~1 μm. A key structural element for inter-head coordination is the neck linker (NL), which connects the heads to the stalk. To examine the role of the NL in regulating stepping, we investigated NL mutants of various lengths using single-molecule optical trapping and bulk fluorescence approaches in the context of a general framework for gating. Our results show that, although inter-head tension enhances motor velocity, it is crucial neither for inter-head coordination nor for rapid rear-head release. Furthermore, cysteine-light mutants do not produce wild-type motility under load. We conclude that kinesin-1 is primarily front-head gated, and that NL length is tuned to enhance unidirectional processivity and velocity.

Article and author information

Author details

  1. Johan O L Andreasson

    Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bojan Milic

    Biophysics Program, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Geng-Yuan Chen

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas R Guydosh

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William O Hancock

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Steven M Block

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    sblock@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Andreasson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Johan O L Andreasson
  2. Bojan Milic
  3. Geng-Yuan Chen
  4. Nicholas R Guydosh
  5. William O Hancock
  6. Steven M Block
(2015)
Examining kinesin processivity within a general gating framework
eLife 4:e07403.
https://doi.org/10.7554/eLife.07403

Share this article

https://doi.org/10.7554/eLife.07403

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.