1. Neuroscience
Download icon

A nap to recap or how reward regulates hippocampal-prefrontal memory networks during daytime sleep in humans

  1. Kinga Igloi  Is a corresponding author
  2. Giulia Gaggioni
  3. Virginie Sterpenich
  4. Sophie Schwartz
  1. University of Geneva, Switzerland
Short Report
  • Cited 22
  • Views 5,464
  • Annotations
Cite this article as: eLife 2015;4:e07903 doi: 10.7554/eLife.07903

Abstract

Sleep plays a crucial role in the consolidation of newly acquired memories. Yet, how our brain selects the noteworthy information that will be consolidated during sleep remains largely unknown. Here we show that post-learning sleep favors the selectivity of long-term consolidation: when tested three months after initial encoding, the most important (i.e., rewarded, strongly encoded) memories are better retained, and also remembered with higher subjective confidence. Our brain imaging data reveals that the functional interplay between dopaminergic reward regions, the prefrontal cortex and the hippocampus contributes to the integration of rewarded associative memories. We further show that sleep spindles strengthen memory representations based on reward values, suggesting a privileged replay of information yielding positive outcomes. These findings demonstrate that post-learning sleep determines the neural fate of motivationally-relevant memories and promotes a value-based stratification of long-term memory stores.

Article and author information

Author details

  1. Kinga Igloi

    Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    For correspondence
    kinga.igloi@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
  2. Giulia Gaggioni

    Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Virginie Sterpenich

    Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Sophie Schwartz

    Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: All subjects were volunteers, gave written informed consent, consent to publish and received financial compensation for their participation in this study. The study was approved by the Ethics Committee of the Geneva University Hospitals.

Reviewing Editor

  1. Heidi Johansen-Berg, University of Oxford, United Kingdom

Publication history

  1. Received: April 2, 2015
  2. Accepted: October 5, 2015
  3. Accepted Manuscript published: October 16, 2015 (version 1)
  4. Version of Record published: December 17, 2015 (version 2)

Copyright

© 2015, Igloi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,464
    Page views
  • 915
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Julio D Perez et al.
    Tools and Resources Updated

    Although mRNAs are localized in the processes of excitatory neurons, it is still unclear whether interneurons also localize a large population of mRNAs. In addition, the variability in the localized mRNA population within and between cell types is unknown. Here we describe the unbiased transcriptomic characterization of the subcellular compartments of hundreds of single neurons. We separately profiled the dendritic and somatic transcriptomes of individual rat hippocampal neurons and investigated mRNA abundances in the soma and dendrites of single glutamatergic and GABAergic neurons. We found that, like their excitatory counterparts, interneurons contain a rich repertoire of ~4000 mRNAs. We observed more cell type-specific features among somatic transcriptomes than their associated dendritic transcriptomes. Finally, using celltype-specific metabolic labeling of isolated neurites, we demonstrated that the processes of glutamatergic and, notably, GABAergic neurons were capable of local translation, suggesting mRNA localization and local translation are general properties of neurons.

    1. Neuroscience
    Yunbo Li et al.
    Research Article

    The conserved MAP3K Dual leucine zipper kinases can activate JNK via MKK4 or MKK7. Vertebrate DLK and LZK share similar biochemical activities and undergo auto-activation upon increased expression. Depending on cell-type and nature of insults DLK and LZK can induce pro-regenerative, pro-apoptotic or pro-degenerative responses, although the mechanistic basis of their action is not well understood. Here, we investigated these two MAP3Ks in cerebellar Purkinje cells using loss- and gain-of function mouse models. While loss of each or both kinases does not cause discernible defects in Purkinje cells, activating DLK causes rapid death and activating LZK leads to slow degeneration. Each kinase induces JNK activation and caspase-mediated apoptosis independent of each other. Significantly, deleting CELF2, which regulates alternative splicing of Map2k7, strongly attenuates Purkinje cell degeneration induced by LZK, but not DLK. Thus, controlling the activity levels of DLK and LZK is critical for neuronal survival and health.