1. Genetics and Genomics
  2. Microbiology and Infectious Disease
Download icon

Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels

  1. Lizbeth Sayavedra
  2. Manuel Kleiner
  3. Ruby Ponnudurai
  4. Silke Wetzel
  5. Eric Pelletier
  6. Valerie Barbe
  7. Nori Satoh
  8. Eiichi Shoguchi
  9. Dennis Fink
  10. Corinna Breusing
  11. Thorsten BH Reusch
  12. Philip Rosenstiel
  13. Markus B Schilhabel
  14. Dörte Becher
  15. Thomas Schweder
  16. Stephanie Markert
  17. Nicole Dubilier
  18. Jillian M Petersen  Is a corresponding author
  1. Max Planck Institute for Marine Microbiology, Germany
  2. Ernst-Moritz-Arndt-University, Germany
  3. Commissariat à l'énergie atomique et aux énergies alternatives, France
  4. Okinawa Institute of Science and Technology, Japan
  5. GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
  6. Institute of Clinical Molecular Biology, Germany
  7. Institute of Marine Biotechnology, Germany
  8. University of Vienna, Austria
Research Article
  • Cited 28
  • Views 3,212
  • Annotations
Cite this article as: eLife 2015;4:e07966 doi: 10.7554/eLife.07966

Abstract

Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs.

Article and author information

Author details

  1. Lizbeth Sayavedra

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Manuel Kleiner

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruby Ponnudurai

    Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Silke Wetzel

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric Pelletier

    Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Valerie Barbe

    Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Nori Satoh

    Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Eiichi Shoguchi

    Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Dennis Fink

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Corinna Breusing

    Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Thorsten BH Reusch

    Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Philip Rosenstiel

    Institute of Clinical Molecular Biology, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Markus B Schilhabel

    Institute of Clinical Molecular Biology, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Dörte Becher

    Institute of Marine Biotechnology, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Thomas Schweder

    Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  16. Stephanie Markert

    Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  17. Nicole Dubilier

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Jillian M Petersen

    Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
    For correspondence
    petersen@microbial-ecology.net
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Axel A Brakhage, Friedrich Schiller University Jena and Hans-Knöll-Institut, Germany

Publication history

  1. Received: April 9, 2015
  2. Accepted: September 14, 2015
  3. Accepted Manuscript published: September 15, 2015 (version 1)
  4. Version of Record published: October 21, 2015 (version 2)

Copyright

© 2015, Sayavedra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,212
    Page views
  • 699
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Quadri Adewale et al.
    Research Article

    Both healthy aging and Alzheimer’s disease (AD) are characterized by concurrent alterations in several biological factors. However, generative brain models of aging and AD are limited in incorporating the measures of these biological factors at different spatial resolutions. Here, we propose a personalized bottom-up spatiotemporal brain model that accounts for the direct interplay between hundreds of RNA transcripts and multiple macroscopic neuroimaging modalities (PET, MRI). In normal elderly and AD participants, the model identifies top genes modulating tau and amyloid-β burdens, vascular flow, glucose metabolism, functional activity, and atrophy to drive cognitive decline. The results also revealed that AD and healthy aging share specific biological mechanisms, even though AD is a separate entity with considerably more altered pathways. Overall, this personalized model offers novel insights into the multiscale alterations in the elderly brain, with important implications for identifying effective genetic targets for extending healthy aging and treating AD progression.

    1. Genetics and Genomics
    Heesun Kim et al.
    Research Article

    Germlines shape and balance heredity, integrating and regulating information from both parental and foreign sources. Insights into how germlines handle information have come from the study of factors that specify or maintain the germline fate. In early Caenorhabditis elegans embryos, the CCCH zinc finger protein PIE-1 localizes to the germline where it prevents somatic differentiation programs. Here, we show that PIE-1 also functions in the meiotic ovary where it becomes SUMOylated and engages the small ubiquitin-like modifier (SUMO)-conjugating machinery. Using whole-SUMO-proteome mass spectrometry, we identify HDAC SUMOylation as a target of PIE-1. Our analyses of genetic interactions between pie-1 and SUMO pathway mutants suggest that PIE-1 engages the SUMO machinery both to preserve the germline fate in the embryo and to promote Argonaute-mediated surveillance in the adult germline.