Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels

  1. Lizbeth Sayavedra
  2. Manuel Kleiner
  3. Ruby Ponnudurai
  4. Silke Wetzel
  5. Eric Pelletier
  6. Valerie Barbe
  7. Nori Satoh
  8. Eiichi Shoguchi
  9. Dennis Fink
  10. Corinna Breusing
  11. Thorsten BH Reusch
  12. Philip Rosenstiel
  13. Markus B Schilhabel
  14. Dörte Becher
  15. Thomas Schweder
  16. Stephanie Markert
  17. Nicole Dubilier
  18. Jillian M Petersen  Is a corresponding author
  1. Max Planck Institute for Marine Microbiology, Germany
  2. Ernst-Moritz-Arndt-University, Germany
  3. Commissariat à l'énergie atomique et aux énergies alternatives, France
  4. Okinawa Institute of Science and Technology, Japan
  5. GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
  6. Institute of Clinical Molecular Biology, Germany
  7. Institute of Marine Biotechnology, Germany
  8. University of Vienna, Austria

Abstract

Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs.

Article and author information

Author details

  1. Lizbeth Sayavedra

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Manuel Kleiner

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruby Ponnudurai

    Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Silke Wetzel

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric Pelletier

    Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Valerie Barbe

    Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Nori Satoh

    Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Eiichi Shoguchi

    Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Dennis Fink

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Corinna Breusing

    Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Thorsten BH Reusch

    Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Philip Rosenstiel

    Institute of Clinical Molecular Biology, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Markus B Schilhabel

    Institute of Clinical Molecular Biology, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Dörte Becher

    Institute of Marine Biotechnology, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Thomas Schweder

    Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  16. Stephanie Markert

    Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  17. Nicole Dubilier

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Jillian M Petersen

    Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
    For correspondence
    petersen@microbial-ecology.net
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Axel A Brakhage, Friedrich Schiller University Jena and Hans-Knöll-Institut, Germany

Version history

  1. Received: April 9, 2015
  2. Accepted: September 14, 2015
  3. Accepted Manuscript published: September 15, 2015 (version 1)
  4. Version of Record published: October 21, 2015 (version 2)

Copyright

© 2015, Sayavedra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,368
    views
  • 755
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lizbeth Sayavedra
  2. Manuel Kleiner
  3. Ruby Ponnudurai
  4. Silke Wetzel
  5. Eric Pelletier
  6. Valerie Barbe
  7. Nori Satoh
  8. Eiichi Shoguchi
  9. Dennis Fink
  10. Corinna Breusing
  11. Thorsten BH Reusch
  12. Philip Rosenstiel
  13. Markus B Schilhabel
  14. Dörte Becher
  15. Thomas Schweder
  16. Stephanie Markert
  17. Nicole Dubilier
  18. Jillian M Petersen
(2015)
Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels
eLife 4:e07966.
https://doi.org/10.7554/eLife.07966

Share this article

https://doi.org/10.7554/eLife.07966

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article Updated

    Runs-of-homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE (runs-of-homozygous diplotype cluster enumerator), to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 single nucleotide polymorphisms (SNPs) and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended human leukocyte antigen (HLA) region and autoimmune disorders. We found an association between a diplotype covering the homeostatic iron regulator (HFE) gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (p-value = 1.82 × 10−11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Jonathan J Ipsaro ... Julius Brennecke
    Research Advance

    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino’s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino’s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.