Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels

  1. Lizbeth Sayavedra
  2. Manuel Kleiner
  3. Ruby Ponnudurai
  4. Silke Wetzel
  5. Eric Pelletier
  6. Valerie Barbe
  7. Nori Satoh
  8. Eiichi Shoguchi
  9. Dennis Fink
  10. Corinna Breusing
  11. Thorsten BH Reusch
  12. Philip Rosenstiel
  13. Markus B Schilhabel
  14. Dörte Becher
  15. Thomas Schweder
  16. Stephanie Markert
  17. Nicole Dubilier
  18. Jillian M Petersen  Is a corresponding author
  1. Max Planck Institute for Marine Microbiology, Germany
  2. Ernst-Moritz-Arndt-University, Germany
  3. Commissariat à l'énergie atomique et aux énergies alternatives, France
  4. Okinawa Institute of Science and Technology, Japan
  5. GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
  6. Institute of Clinical Molecular Biology, Germany
  7. Institute of Marine Biotechnology, Germany
  8. University of Vienna, Austria

Abstract

Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs.

Article and author information

Author details

  1. Lizbeth Sayavedra

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Manuel Kleiner

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruby Ponnudurai

    Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Silke Wetzel

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric Pelletier

    Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Valerie Barbe

    Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Nori Satoh

    Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Eiichi Shoguchi

    Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Dennis Fink

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Corinna Breusing

    Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Thorsten BH Reusch

    Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Philip Rosenstiel

    Institute of Clinical Molecular Biology, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Markus B Schilhabel

    Institute of Clinical Molecular Biology, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Dörte Becher

    Institute of Marine Biotechnology, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Thomas Schweder

    Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  16. Stephanie Markert

    Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
    Competing interests
    The authors declare that no competing interests exist.
  17. Nicole Dubilier

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Jillian M Petersen

    Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
    For correspondence
    petersen@microbial-ecology.net
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Axel A Brakhage, Friedrich Schiller University Jena and Hans-Knöll-Institut, Germany

Version history

  1. Received: April 9, 2015
  2. Accepted: September 14, 2015
  3. Accepted Manuscript published: September 15, 2015 (version 1)
  4. Version of Record published: October 21, 2015 (version 2)

Copyright

© 2015, Sayavedra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,350
    Page views
  • 744
    Downloads
  • 41
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lizbeth Sayavedra
  2. Manuel Kleiner
  3. Ruby Ponnudurai
  4. Silke Wetzel
  5. Eric Pelletier
  6. Valerie Barbe
  7. Nori Satoh
  8. Eiichi Shoguchi
  9. Dennis Fink
  10. Corinna Breusing
  11. Thorsten BH Reusch
  12. Philip Rosenstiel
  13. Markus B Schilhabel
  14. Dörte Becher
  15. Thomas Schweder
  16. Stephanie Markert
  17. Nicole Dubilier
  18. Jillian M Petersen
(2015)
Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels
eLife 4:e07966.
https://doi.org/10.7554/eLife.07966

Share this article

https://doi.org/10.7554/eLife.07966

Further reading

    1. Genetics and Genomics
    Carly Boye, Cynthia A Kalita ... Francesca Luca
    Research Article Updated

    Genetic variants in gene regulatory sequences can modify gene expression and mediate the molecular response to environmental stimuli. In addition, genotype–environment interactions (GxE) contribute to complex traits such as cardiovascular disease. Caffeine is the most widely consumed stimulant and is known to produce a vascular response. To investigate GxE for caffeine, we treated vascular endothelial cells with caffeine and used a massively parallel reporter assay to measure allelic effects on gene regulation for over 43,000 genetic variants. We identified 665 variants with allelic effects on gene regulation and 6 variants that regulate the gene expression response to caffeine (GxE, false discovery rate [FDR] < 5%). When overlapping our GxE results with expression quantitative trait loci colocalized with coronary artery disease and hypertension, we dissected their regulatory mechanisms and showed a modulatory role for caffeine. Our results demonstrate that massively parallel reporter assay is a powerful approach to identify and molecularly characterize GxE in the specific context of caffeine consumption.

    1. Cell Biology
    2. Genetics and Genomics
    Guanxiong Yan, Yang Ma ... Wei Miao
    Research Article

    Although most species have two sexes, multisexual (or multi-mating type) species are also widespread. However, it is unclear how mating-type recognition is achieved at the molecular level in multisexual species. The unicellular ciliate Tetrahymena thermophila has seven mating types, which are determined by the MTA and MTB proteins. In this study, we found that both proteins are essential for cells to send or receive complete mating-type information, and transmission of the mating-type signal requires both proteins to be expressed in the same cell. We found that MTA and MTB form a mating-type recognition complex that localizes to the plasma membrane, but not to the cilia. Stimulation experiments showed that the mating-type-specific regions of MTA and MTB mediate both self- and non-self-recognition, indicating that T. thermophila uses a dual approach to achieve mating-type recognition. Our results suggest that MTA and MTB form an elaborate multifunctional protein complex that can identify cells of both self and non-self mating types in order to inhibit or activate mating, respectively.