Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions

  1. Benjamin Werner  Is a corresponding author
  2. Fabian Beier
  3. Sebastian Hummel
  4. Stefan Balabanov
  5. Lisa Lassay
  6. Thorsten Orlikowsky
  7. David Dingli
  8. Tim H Brümmendorf
  9. Arne Traulsen
  1. Max Planck Institute for Evolutionary Biology, Germany
  2. Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Germany
  3. University Hospital of Zürich, Switzerland
  4. Mayo Clinic, United States

Abstract

We investigate the in vivo patterns of stem cell divisions in the human hematopoietic system throughout life. In particular, we analyze the shape of telomere length distributions underlying stem cell behavior within individuals. Our mathematical model shows that these distributions contain a fingerprint of the progressive telomere loss and the fraction of symmetric cell proliferations. Our predictions are tested against measured telomere length distributions in humans across all ages, collected from lymphocyte and granulocyte sorted telomere length data of 356 healthy individuals, including 47 cord blood and 28 bone marrow samples. We find an increasing stem cell pool during childhood and adolescence and an approximately maintained stem cell population in adults. Furthermore, our method is able to detect individual differences from a single tissue sample, i.e. a single snapshot. Prospectively, this allows us to compare cell proliferation between individuals and identify abnormal stem cell dynamics, which affects the risk of stem cell related diseases.

Article and author information

Author details

  1. Benjamin Werner

    Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
    For correspondence
    werner@evolbio.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabian Beier

    Department of Hematology and Oncology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sebastian Hummel

    Department of Hematology and Oncology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefan Balabanov

    Division of Hematology, University Hospital of Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Lisa Lassay

    Department of Pediatrics, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Thorsten Orlikowsky

    Department of Pediatrics, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. David Dingli

    Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Tim H Brümmendorf

    Department of Hematology and Oncology, Rheinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Arne Traulsen

    Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Frank Jülicher, Max Planck Institute for the Physics of Complex Systems, Germany

Ethics

Human subjects: All samples and the approval for publication were taken with informed consent of all patients at the University Hospital Aachen according to the guidelines and the approval of the ethics committees at the University Hospital Aachen.

Version history

  1. Received: May 13, 2015
  2. Accepted: October 14, 2015
  3. Accepted Manuscript published: October 15, 2015 (version 1)
  4. Version of Record published: January 27, 2016 (version 2)

Copyright

© 2015, Werner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,814
    Page views
  • 700
    Downloads
  • 66
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin Werner
  2. Fabian Beier
  3. Sebastian Hummel
  4. Stefan Balabanov
  5. Lisa Lassay
  6. Thorsten Orlikowsky
  7. David Dingli
  8. Tim H Brümmendorf
  9. Arne Traulsen
(2015)
Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions
eLife 4:e08687.
https://doi.org/10.7554/eLife.08687

Share this article

https://doi.org/10.7554/eLife.08687

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Alain Pulfer, Diego Ulisse Pizzagalli ... Santiago Fernandez Gonzalez
    Tools and Resources

    Intravital microscopy has revolutionized live-cell imaging by allowing the study of spatial–temporal cell dynamics in living animals. However, the complexity of the data generated by this technology has limited the development of effective computational tools to identify and quantify cell processes. Amongst them, apoptosis is a crucial form of regulated cell death involved in tissue homeostasis and host defense. Live-cell imaging enabled the study of apoptosis at the cellular level, enhancing our understanding of its spatial–temporal regulation. However, at present, no computational method can deliver robust detection of apoptosis in microscopy timelapses. To overcome this limitation, we developed ADeS, a deep learning-based apoptosis detection system that employs the principle of activity recognition. We trained ADeS on extensive datasets containing more than 10,000 apoptotic instances collected both in vitro and in vivo, achieving a classification accuracy above 98% and outperforming state-of-the-art solutions. ADeS is the first method capable of detecting the location and duration of multiple apoptotic events in full microscopy timelapses, surpassing human performance in the same task. We demonstrated the effectiveness and robustness of ADeS across various imaging modalities, cell types, and staining techniques. Finally, we employed ADeS to quantify cell survival in vitro and tissue damage in mice, demonstrating its potential application in toxicity assays, treatment evaluation, and inflammatory dynamics. Our findings suggest that ADeS is a valuable tool for the accurate detection and quantification of apoptosis in live-cell imaging and, in particular, intravital microscopy data, providing insights into the complex spatial–temporal regulation of this process.