The GARP complex is required for cellular sphingolipid homeostasis

  1. Florian Fröhlich
  2. Constance Petit
  3. Nora Kory
  4. Romain Christiano
  5. Hans-Kristian Hannibal-Bach
  6. Morven Graham
  7. Xinran Liu
  8. Christer S Ejsing
  9. Robert V Farese
  10. Tobias C Walther  Is a corresponding author
  1. Harvard T.H. Chan School of Public Health, United States
  2. University of Southern Denmark, Denmark
  3. Yale School of Medicine, United States

Abstract

Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. Here, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2.

Article and author information

Author details

  1. Florian Fröhlich

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Constance Petit

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nora Kory

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Romain Christiano

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hans-Kristian Hannibal-Bach

    Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Morven Graham

    Center for Cellular and Molecular Imaging, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xinran Liu

    Center for Cellular and Molecular Imaging, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Christer S Ejsing

    Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert V Farese

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tobias C Walther

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    For correspondence
    twalther@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Peter Tontonoz, Howard Hughes Medical Institute, University of California, Los Angeles, United States

Version history

  1. Received: May 14, 2015
  2. Accepted: September 9, 2015
  3. Accepted Manuscript published: September 10, 2015 (version 1)
  4. Version of Record published: October 12, 2015 (version 2)

Copyright

© 2015, Fröhlich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,445
    views
  • 1,463
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Fröhlich
  2. Constance Petit
  3. Nora Kory
  4. Romain Christiano
  5. Hans-Kristian Hannibal-Bach
  6. Morven Graham
  7. Xinran Liu
  8. Christer S Ejsing
  9. Robert V Farese
  10. Tobias C Walther
(2015)
The GARP complex is required for cellular sphingolipid homeostasis
eLife 4:e08712.
https://doi.org/10.7554/eLife.08712

Share this article

https://doi.org/10.7554/eLife.08712

Further reading

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.