1. Cell Biology
Download icon

The GARP complex is required for cellular sphingolipid homeostasis

  1. Florian Fröhlich
  2. Constance Petit
  3. Nora Kory
  4. Romain Christiano
  5. Hans-Kristian Hannibal-Bach
  6. Morven Graham
  7. Xinran Liu
  8. Christer S Ejsing
  9. Robert V Farese
  10. Tobias C Walther  Is a corresponding author
  1. Harvard T.H. Chan School of Public Health, United States
  2. University of Southern Denmark, Denmark
  3. Yale School of Medicine, United States
Research Article
  • Cited 39
  • Views 4,980
  • Annotations
Cite this article as: eLife 2015;4:e08712 doi: 10.7554/eLife.08712

Abstract

Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. Here, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2.

Article and author information

Author details

  1. Florian Fröhlich

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Constance Petit

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nora Kory

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Romain Christiano

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hans-Kristian Hannibal-Bach

    Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  6. Morven Graham

    Center for Cellular and Molecular Imaging, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xinran Liu

    Center for Cellular and Molecular Imaging, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Christer S Ejsing

    Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Robert V Farese

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tobias C Walther

    Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
    For correspondence
    twalther@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Peter Tontonoz, Howard Hughes Medical Institute, University of California, Los Angeles, United States

Publication history

  1. Received: May 14, 2015
  2. Accepted: September 9, 2015
  3. Accepted Manuscript published: September 10, 2015 (version 1)
  4. Version of Record published: October 12, 2015 (version 2)

Copyright

© 2015, Fröhlich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,980
    Page views
  • 1,300
    Downloads
  • 39
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Khoosheh Khayati et al.
    Research Article Updated

    Liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11) is the major energy sensor for cells to respond to metabolic stress. Autophagy degrades and recycles proteins, macromolecules, and organelles for cells to survive starvation. To assess the role and cross-talk between autophagy and Lkb1 in normal tissue homeostasis, we generated genetically engineered mouse models where we can conditionally delete Stk11 and autophagy essential gene, Atg7, respectively or simultaneously, throughout the adult mice. We found that Lkb1 was essential for the survival of adult mice, and autophagy activation could temporarily compensate for the acute loss of Lkb1 and extend mouse life span. We further found that acute deletion of Lkb1 in adult mice led to impaired intestinal barrier function, hypoglycemia, and abnormal serum metabolism, which was partly rescued by the Lkb1 loss-induced autophagy upregulation via inhibiting p53 induction. Taken together, we demonstrated that autophagy and Lkb1 work synergistically to maintain adult mouse homeostasis and survival.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Isabelle C Kos-Braun et al.
    Feature Article Updated

    Core facilities are an effective way of making expensive experimental equipment available to a large number of researchers, and are thus well placed to contribute to efforts to promote good research practices. Here we report the results of a survey that asked core facilities in Europe about their approaches to the promotion of good research practices, and about their interactions with users from the first contact to the publication of the results. Based on 253 responses we identified four ways that good research practices could be encouraged: (i) motivating users to follow the advice and procedures for best research practice; (ii) providing clear guidance on data-management practices; (iii) improving communication along the whole research process; and (iv) clearly defining the responsibilities of each party.