Modulation of GABA and resting state functional connectivity by transcranial direct current stimulationc

  1. Velicia Bachtiar
  2. Jamie Near
  3. Heidi Johansen-Berg
  4. Charlotte J Stagg  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. McGill University, United Kingdom

Abstract

We previously demonstrated that network-level functional connectivity in the human brain could be related to levels of inhibition in a major network node at baseline (Stagg et al., 2014). Here, we build upon this finding to directly investigate the effects of perturbing M1 GABA and resting state functional connectivity using transcranial direct current stimulation (tDCS), a neuromodulatory approach that has previously been demonstrated to modulate both metrics. FMRI data and GABA levels, as assessed by Magnetic Resonance Spectroscopy, were measured before and after 20 minutes of 1mA anodal or sham tDCS. In line with previous studies, baseline GABA levels were negatively correlated with the strength of functional connectivity within the resting motor network. However, although we confirm the previously reported findings that anodal tDCS reduces GABA concentration and increases functional connectivity in the stimulated motor cortex, these changes are not correlated, suggesting they may be driven by distinct underlying mechanisms.

Article and author information

Author details

  1. Velicia Bachtiar

    Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Jamie Near

    Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Heidi Johansen-Berg

    Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    Heidi Johansen-Berg, Reviewing editor, eLife.
  4. Charlotte J Stagg

    Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
    For correspondence
    charlotte.stagg@ndcn.ox.ac.uk
    Competing interests
    No competing interests declared.

Ethics

Human subjects: Participants gave their informed consent to participate in this study in accordance with ethical approval from the East London Research Ethics Committee (Ref: 10/H0703/50).

Copyright

© 2015, Bachtiar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,575
    views
  • 901
    downloads
  • 202
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Velicia Bachtiar
  2. Jamie Near
  3. Heidi Johansen-Berg
  4. Charlotte J Stagg
(2015)
Modulation of GABA and resting state functional connectivity by transcranial direct current stimulationc
eLife 4:e08789.
https://doi.org/10.7554/eLife.08789

Share this article

https://doi.org/10.7554/eLife.08789

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Martina Rudgalvyte, Zehan Hu ... Dominique A Glauser
    Research Article

    Thermal nociception in Caenorhabditis elegans is regulated by the Ca²+/calmodulin-dependent protein kinase CMK-1, but its downstream effectors have remained unclear. Here, we combined in vitro kinase assays with mass-spectrometry-based phosphoproteomics to identify hundreds of CMK-1 substrates, including the calcineurin A subunit TAX-6, phosphorylated within its conserved regulatory domain. Genetic and pharmacological analyses reveal multiple antagonistic interactions between CMK-1 and calcineurin signaling in modulating both naive thermal responsiveness and adaptation to repeated noxious stimuli. Cell-specific manipulations indicate that CMK-1 acts in AFD and ASER thermo-sensory neurons, while TAX-6 functions in FLP thermo-sensory neurons and downstream interneurons. Since CMK-1 and TAX-6 act in distinct cell types, the phosphorylation observed in vitro might not directly underlie the behavioral phenotype. Instead, the opposing effects seem to arise from their distributed roles within the sensory circuit. Overall, our study provides (1) a resource of candidate CMK-1 targets for further dissecting CaM kinase signaling and (2) evidence of a previously unrecognized, circuit-level antagonism between CMK-1 and calcineurin pathways. These findings highlight a complex interplay of signaling modules that modulate thermal nociception and adaptation, offering new insights into potentially conserved mechanisms that shape nociceptive plasticity and pain (de)sensitization in more complex nervous systems.

    1. Neuroscience
    Hannah Bos, Christoph Miehl ... Brent Doiron
    Research Article

    Synaptic inhibition is the mechanistic backbone of a suite of cortical functions, not the least of which are maintaining network stability and modulating neuronal gain. In cortical models with a single inhibitory neuron class, network stabilization and gain control work in opposition to one another – meaning high gain coincides with low stability and vice versa. It is now clear that cortical inhibition is diverse, with molecularly distinguished cell classes having distinct positions within the cortical circuit. We analyze circuit models with pyramidal neurons (E) as well as parvalbumin (PV) and somatostatin (SOM) expressing interneurons. We show how, in E – PV – SOM recurrently connected networks, SOM-mediated modulation can lead to simultaneous increases in neuronal gain and network stability. Our work exposes how the impact of a modulation mediated by SOM neurons depends critically on circuit connectivity and the network state.