Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation

  1. Velicia Bachtiar
  2. Jamie Near
  3. Heidi Johansen-Berg
  4. Charlotte J Stagg  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. McGill University, United Kingdom

Abstract

We previously demonstrated that network-level functional connectivity in the human brain could be related to levels of inhibition in a major network node at baseline (Stagg et al., 2014). Here, we build upon this finding to directly investigate the effects of perturbing M1 GABA and resting state functional connectivity using transcranial direct current stimulation (tDCS), a neuromodulatory approach that has previously been demonstrated to modulate both metrics. FMRI data and GABA levels, as assessed by Magnetic Resonance Spectroscopy, were measured before and after 20 minutes of 1mA anodal or sham tDCS. In line with previous studies, baseline GABA levels were negatively correlated with the strength of functional connectivity within the resting motor network. However, although we confirm the previously reported findings that anodal tDCS reduces GABA concentration and increases functional connectivity in the stimulated motor cortex, these changes are not correlated, suggesting they may be driven by distinct underlying mechanisms.

Article and author information

Author details

  1. Velicia Bachtiar

    Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Jamie Near

    Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Heidi Johansen-Berg

    Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    Heidi Johansen-Berg, Reviewing editor, eLife.
  4. Charlotte J Stagg

    Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
    For correspondence
    charlotte.stagg@ndcn.ox.ac.uk
    Competing interests
    No competing interests declared.

Ethics

Human subjects: Participants gave their informed consent to participate in this study in accordance with ethical approval from the East London Research Ethics Committee (Ref: 10/H0703/50).

Copyright

© 2015, Bachtiar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,570
    views
  • 901
    downloads
  • 198
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Velicia Bachtiar
  2. Jamie Near
  3. Heidi Johansen-Berg
  4. Charlotte J Stagg
(2015)
Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation
eLife 4:e08789.
https://doi.org/10.7554/eLife.08789

Share this article

https://doi.org/10.7554/eLife.08789

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.