Promoter nucleosome dynamics regulated by signaling through the CTD code

  1. Philippe Materne
  2. Jayamani Anandhakumar
  3. Valerie Migeot
  4. Ignacio Soriano
  5. Carlo Yague-Sanz
  6. Elena Hidalgo
  7. Carole Mignion
  8. Luis Quintales
  9. Francisco Antequera
  10. Damien Hermand  Is a corresponding author
  1. University of Namur, Belgium
  2. LSU Health Sciences Center, United States
  3. Universidad de Salamanca, Spain
  4. Universitat Pompeu Fabra, Spain

Abstract

The phosphorylation of the RNA polymerase II CTD plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phosphoS2 CTD nearby the promoter impairs the phosphoS5 CTD dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phosphoS2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signaling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signaling through the CTD code regulates promoter nucleosomes dynamics.

Article and author information

Author details

  1. Philippe Materne

    Namur Research College, University of Namur, Namur, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Jayamani Anandhakumar

    Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Valerie Migeot

    Namur Research College, University of Namur, Namur, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Ignacio Soriano

    Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Carlo Yague-Sanz

    Namur Research College, University of Namur, Namur, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Elena Hidalgo

    Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Carole Mignion

    Namur Research College, University of Namur, Namur, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  8. Luis Quintales

    Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Francisco Antequera

    Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Damien Hermand

    Namur Research College, University of Namur, Namur, Belgium
    For correspondence
    Damien.Hermand@unamur.be
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Danny Reinberg, Howard Hughes Medical Institute, New York University School of Medicine, United States

Version history

  1. Received: May 26, 2015
  2. Accepted: June 19, 2015
  3. Accepted Manuscript published: June 22, 2015 (version 1)
  4. Version of Record published: July 15, 2015 (version 2)

Copyright

© 2015, Materne et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,674
    views
  • 638
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philippe Materne
  2. Jayamani Anandhakumar
  3. Valerie Migeot
  4. Ignacio Soriano
  5. Carlo Yague-Sanz
  6. Elena Hidalgo
  7. Carole Mignion
  8. Luis Quintales
  9. Francisco Antequera
  10. Damien Hermand
(2015)
Promoter nucleosome dynamics regulated by signaling through the CTD code
eLife 4:e09008.
https://doi.org/10.7554/eLife.09008

Share this article

https://doi.org/10.7554/eLife.09008

Further reading

    1. Chromosomes and Gene Expression
    2. Immunology and Inflammation
    Rajan M Thomas, Matthew C Pahl ... Andrew D Wells
    Research Article

    Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.